




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE2PAGE5浅析交-直-交电压型变频器的内部结构1、电路结构框图交直交电压型变频器主要由整流单元(交流变直流)、滤波单元、逆变单元(直流变交流)、制动单元、驱动单元、检测单元、控制单元等部分组成的。3、各单元电路及原理3.1整流单元整流单元用于电网的三相交流电变成直流。可分为可控整流和不可控整流两大类。可控整流由于存在输出电压含有较多的谐波、输入功率因数低、控制部分复杂、中间直流大电容造成的调压惯性大相应缓慢等缺点,随着PMW技术的出现可控整流在交直交变频器中已经被淘汰。不可控整流是目前交直交变频器的主流形式,它有2种构成形式,6支整流二极管或6支晶闸管组成三相整流桥。图26支二极管构成的三相桥式整流电路图36支晶闸管构成的三相桥式整流电路由6支晶闸管构成的三相桥式整流电路,晶闸管只用于控制通断不控制直流电压的大小。3.2滤波单元滤波单元主要采用大电容滤波,直流电压波形比较平直,在理想情况下是一种内阻抗为零的恒压源,输出交流电压是矩形波或阶梯波,这是电压型变频器的一个主要特征。3.3逆变单元由IGBT模块构成图6集成电路TLP250构成的驱动器及TLP250的管脚图上图为由集成电路TLP250构成的驱动器及TLP250的管脚图。TLP250内置光耦的隔离电压可达2500V,上升和下降时间均小于0.5μs,输出电流达0.5A,可直接驱动50A/1200V以内的IGBT。外加推挽放大晶体管后,可驱动电流容量更大的IGBT。TLP250构成的驱动器体积小,价格便宜,是不带过流保护的IGBT驱动器中较理想的选。
下图为由EXB8..Series集成芯片构成的驱动电路,EXB8..Series集成芯片是一种专用于IGBT的集驱动、保护等功能于一体的复合集成电路。广泛用于逆变器和电机驱动用变频器、伺服电机驱动、UPS、感应加热和电焊设备等工业领域。图7EXB8..Series集成芯片构成的驱动电路检测单元控制系统反馈量检测的精确程度,从某种意义上说,很大程度上决定了控制系统所能达到的控制品质。检测电路是变频调速系统的重要组成部分,它相当于系统的“眼睛和触觉”。检测与保护电路设计的合理与否,直接关系到系统运行的可靠性和控制精度。3.6.1电流检测方法电流信号检测的结果可以用于变频器转矩和电流控制以及过流保护信号。电流信号的检测主要有以下几种方法。(1)直接串联取样电阻法这种方法简单、可靠、不失真、速度快,但是有损耗,不隔离,只适用于小电流并不需要隔离的情况,多用于只有几个kVA的小容量变频器中。(2)电流互感器法这种方法损耗小,与主电路隔离,使用方便、灵活、便宜,但线性度较低,工作频带窄(主要用来测工频),且有一定滞后,多用于高压大电流的场合。图8电流互感器上图中,R为取样电阻,取样信号为:Us=I2R=I1R/M式中,M为互感器绕组匝数。(3)霍尔传感器法它具有精度高、线性好、频带宽、响应快、过载能力强和不损失测量电路能量等优点。其原理如下图所示。图9霍尔传感器原理图上图中,Ip为被测电流,这是一种磁场平衡测量方式,精度比较高,若LEM的变流比为1:M,则取得电压Us也符合式Us=IpR/M。在通用变频器中霍尔传感器已成为电流检测的主力。3.6.2电压检测方法电压信号检测的结果可以用于变频器输出转矩和电压控制以及过压、欠压保护信号。电压信号的检测可用电阻分压、线性光耦、电压互感器或霍尔传感器等方法。(1)电阻分压法:用电阻网络将高压进行分压,得到按比例缩小的低电压。该方法使用简单,但其精度受外界环境(主要是温度)影响较大,且不能实现隔离,如果作为模拟反馈量进行A/D转换,需要加入隔离放大器。该方法适用于低压系统。(2)电压互感器法:与电流互感器类似,只能用于检测交流电压,适用于高压系统中。(3)霍尔电压传感器法:原理与霍尔电流传感器类似,如下图所示。图10霍尔电压传感器(4)线性光耦法:霍尔电压传感器具有反应速度快和精度高的特点,但是在小功率的变频器中,采用霍尔传感器的成本昂贵,而采用高性能的光耦则可降低成本。像HP公司生产的线性光耦HCNR200/201等具有很高的线性度和灵敏度,可精确地传送电压信号。图11是一个用HCNR200/201测量电压的实际电路,光耦实际上起直流变压器的作用。图11用HCNR200/201测量电压的实际电路上图中,原边运放采用的是单电源供电的LM2904,副边运放采用精密运放OP07。在测量直流高压时,应先采用电阻分压降压,以得到一个未经隔离的低压直流信号,然后经过线性光耦隔离将其变换成与之成正比的直流电压送入A/D转换测量。另外,完全可以利用光耦的线性和隔离功能结合直接串联分流器测量电流。线性光耦法是一种测量变频器交流输出电压的简单而有效的方法。高速数字光耦6N136,6N137,HCPL3120,PC900V等具有体积小、寿命长、抗干扰性强、隔离电压高、高速度、与TTL电平兼容等优点,在数据信号处理和信号传输中应用的十分广泛,可用来检测变频器交流输出电压。下图所示为一种简单实用的用线性光耦实现的变频器输出电压检测的电路。图12利用光耦6N137和电阻降压电路采集逆变器利用光耦6N137和电阻降压电路采集逆变器U、V、W三相输出对直流环节负极N的电压信号,这样三相信号都变为单极性SPWM电压脉冲,便于与单向光耦匹配。单极性SPWM脉冲电压经小电容滤波后便成为如下图所示的比较平滑的正弦半波信号。图13单极性SPWM脉冲电压经小电容滤波前后的电压它反映了逆变器交流电压(半波)的瞬时值,然后送相应的CPU或ASIC处理,根据需要既可以得到电压的瞬时值,也可以计算出电压的有效值。日本Sanken公司研究的电压矢量控制变频器就是利用这种电路完成对交流输出电压的测量,控制效果良好。4、控制单元现代变频调速基本是用16位、32位单片机或DSP为控制核心,从而实现全数字化控制。4.1变频器中常用的控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。(1)V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。图14V/f控制变频器结构V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。(2)转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。图15转差频率控制(3)矢量控制矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。图16基于转差频率的矢量控制方式基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差频率控制方式在输出特性方面能得到很大的改善。但是,这种控制方式属于闭环控制方式,需要在电动机上安装速度传感器,因此,应用范围受到限制。图17无速度传感器矢量控制无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂,一般需要专门的处理器来进行计算,因此,实时性不是太理想,控制精度受到计算精度的影响。4.2PWM(PulseWidthModulation)控制——脉冲宽度调制技术。通过控制逆变器中的IGBT导通或断开,使其输出端获得一系列宽度不等的矩形脉冲波形,而决定开关器件动作顺序和时间分配规律的控制方法继称脉宽调制方法。改变矩形脉冲的宽度可以控制逆变单元输出交流基波电压的幅值,通过改变调制周期可以控制其输出频率,从而在逆变单元上可以同时进行输出电压幅值与频率的控制,满足变频调速对电压与频率协调控制的要求。PWM技术简化了变频器的结构,提高了电网的功率因数,加快了系统的动态响应,使负载电机可在近似正弦波的交变电压下运行,转矩脉动小,大大扩展了拖动系统的调速范围,并提高了系统的性能。图19正弦电压的脉宽调制示意图如上图所示的正弦半波波型分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度相等,都等于π/N,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,是矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积相等,就得到上图中的脉冲序列。这就是PWM波形。像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称为SPWM波形。图20三相PWM波形SPWM的控制就是根据三角载波与正弦调制波的交点来确定逆变器功率开关器件的开关时刻,可以用模拟点在电路、数字电子电路或专用的大规模集成电路芯片等硬件实现,也可以用微型计算机通过软件生成SPWM波形。开始应用SPWM技术时,多采用振荡器、比较器等模拟电路,由于所用元件多,控制线路比较复杂,控制精度也难以保证。在微电子技术迅速发展的今天,以为己为基础的数字控制方案日益被人采纳,提出了多种SPWM波形的软件生成方法。目前,微处理器生成SPWM驱动信号,通常有查表和实时计算两种方法.查表法要通过三角载波和正弦调制波相比较来确定开关时刻,它是根据不同的调制度和调制信号的角频率先离线计算出个开关器件的通断时刻,把计算结果存于EPROM中,运行时查表读出所需要的数据进行实时控制;实时计算法不进行离线计算,而是运行时在线计算所需的数据。
参考文献[1]
ABB公司电气传动手册
[2]
西门子电气传动手册
[3]
黄俊王兆安编,电力电子变流技术,北京:机械工业出版社,1997.10(第3版).
[4]
陈伯时主编,电力拖动自动控制系统,北京:机械工业出版社,2005.9(第2版).
[5]
李华德主编,电力拖动控制系统(运动控制系统),北京:电子工业出版社,2006.12
[6]
佟纯厚主编,交流电动机晶闸管调速系统,北京:机械工业出版社,1988.11.变频器的工作原理:主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”整流器大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。平波回路在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。逆变器同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。(2)电压、电流检测电路:与主回路电位隔离检测电压、电流
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三保服务合同范例
- 兽药代工合同范例
- 个人跟工厂 采购合同范例
- 买房住房合同范例
- 专利授权借用合同范例
- 空间异质性和作物生长状况对农田遥感识别方法的影响
- 个人财务顾问合同范例
- 基于BNN的水质分类方法研究及监测系统设计
- 加工车床租售合同范例
- 乡村水泥修路合同范例
- 2024年河南省中职对口升学高考语文试题真题(原卷版)
- 卵巢囊肿护理病例讨论
- 《无线局域网组建》课件-0无线课程概述
- 拉萨市2025届高三第一次联考(一模)语文试卷(含答案解析)
- 危险品运输行业可行性分析报告
- 2024解析:第八章牛顿第一定律、二力平衡-讲核心(解析版)
- 《劳动法与劳动关系》课件
- 2025陕西延长石油(集团)有限责任公司招聘(1881人)笔试备考题库及答案解析
- 无人机航拍技术教案(完整版)
- 打架案例分析
- 2024脑血管病指南
评论
0/150
提交评论