山东省菏泽市牡丹区第二十一初级中学2024届数学八年级第二学期期末联考模拟试题含解析_第1页
山东省菏泽市牡丹区第二十一初级中学2024届数学八年级第二学期期末联考模拟试题含解析_第2页
山东省菏泽市牡丹区第二十一初级中学2024届数学八年级第二学期期末联考模拟试题含解析_第3页
山东省菏泽市牡丹区第二十一初级中学2024届数学八年级第二学期期末联考模拟试题含解析_第4页
山东省菏泽市牡丹区第二十一初级中学2024届数学八年级第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省菏泽市牡丹区第二十一初级中学2024届数学八年级第二学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里 B.45海里 C.20海里 D.30海里2.如图,小明在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于的长为半径画弧,两弧相交于C、D两点,直线CD即为所求.根据他的作图方法可知四边形一定是()A.矩形 B.菱形 C.正方形 D.无法确定3.如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=()A.33° B.80° C.57° D.67°4.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<25.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.106.关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是()A.①③ B.②③ C.①④ D.②④7.如图,在▱ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A.8 B.6 C.9 D.108.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+2上,则y1,y2,y3的值的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3>y1>y2D.y1>y2>y39.下列二次根式是最简二次根式的是()A.B.C.D.10.如图,在平行四边形ABCD中,∠B=70°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A.45° B.55° C.50° D.60°二、填空题(每小题3分,共24分)11.若是方程的两个实数根,则_______.12.如图,在平面直角坐标系中,过点分别作轴于点,轴于点,、分别交反比例函数的图像于点、,则四边形的面积为__________.13.如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长都为2,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积均为定值__________.14.如图,矩形中,,延长交于点,延长交于点,过点作,交的延长线于点,,则=_________.15.若y与x的函数关系式为y=2x-2,当x=2时,y的值为_______.16.如图,在中,分别以点为圆心,大于的长为半径画弧,两弧交于点,作直线交于点,交于点,连接.若,连接点和的中点,则的长为_______.17.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.18.已知点P(a+3,7+a)位于二、四象限的角平分线上,则点P的坐标为_________________.三、解答题(共66分)19.(10分)如图,E、F、G、H分别为四边形ABCD四边之中点.(1)求证:四边形EFGH为平行四边形;(2)当AC、BD满足______时,四边形EFGH为矩形.20.(6分)求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)21.(6分)某商场销售A,B两款书包,己知A,B两款书包的进货价格分别为每个30元、50元,商场用3600元的资金购进A,B两款书包共100个.(1)求A,B两款书包分别购进多少个?(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?22.(8分)如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.23.(8分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(1)若△APD为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.24.(8分)已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象.(1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.25.(10分)为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.26.(10分)已知三角形纸片,其中,,点分别是上的点,连接.(1)如图1,若将纸片沿折叠,折叠后点刚好落在边上点处,且,求的长;(2)如图2,若将纸片沿折叠,折叠后点刚好落在边上点处,且.试判断四边形的形状,并说明理由;求折痕的长.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【题目详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)故选:D.【题目点拨】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.2、B【解题分析】

根据菱形的判定方法:四边都相等的四边形是菱形判定即可.【题目详解】根据作图方法可得:,因此四边形ABCD一定是菱形.故选:B【题目点拨】本题考查了菱形的判定,解题的关键在于根据四边相等的四边形是菱形判断.3、A【解题分析】

根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.【题目详解】解:在△ABC中,∠A=33°,

∴由平移中对应角相等,得∠EDF=∠A=33°.

故选:A.【题目点拨】此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.4、B【解题分析】

根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【题目详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.5、C【解题分析】

根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC的长.【题目详解】在△ABC中,AB=AC,AD是∠BAC的平分线,ADBC,BC=2BD.∠ADB=90°在Rt△ABD中,根据勾股定理得:BD===4BC=2BD=2×4=8.故选C.【题目点拨】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.6、C【解题分析】垂直于弦的直径平分弦,所以①正确;平分弦(非直径)的直径垂直于弦,所以②错误;在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.故选C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧所对的圆周角线段,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7、A【解题分析】

由AC的垂直平分线交AD于E,易证得AE=CE,又由四边形ABCD是平行四边形,即可求得AD与DC的长,继而求得答案【题目详解】∵AC的垂直平分线交AD于E,∴AE=CE,∵四边形ABCD是平行四边形,∴CD=AB=3,AD=BC=5,∴△CDE的周长是:DC+DE+CE=DC+DE+AE=DC+AD=3+5=8,故选A.【题目点拨】此题考查线段垂直平分线的性质,平行四边形的性质,解题关键在于得到AE=CE8、D【解题分析】k=-3<0,所以函数y随x增大而减小,所以y1>y2>y3,所以选D.9、C【解题分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有未开尽方的因数;因此这三个选项都不符合最简二次根式的要求.所以本题的答案应该是C.解:A、=;B、=2;D、=2;因此这三个选项都不是最简二次根式,故选C.10、B【解题分析】

根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.【题目详解】:解:∵AD∥BC,∠B=70°,

∴∠BAD=180°-∠B=110°.

∵AE平分∠BAD

∴∠DAE=∠BAD=55°.

∴∠AEB=∠DAE=55°

∵CF∥AE

∴∠1=∠AEB=55°.

故选B.【题目点拨】本题考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.二、填空题(每小题3分,共24分)11、10【解题分析】试题分析:根据韦达定理可得:a+b=2,ab=-3,则=4-2×(-3)=10.考点:韦达定理的应用12、1【解题分析】

根据反比例函数系数k的几何意义可得S△DBO=S△AOC=|k|=1,再利用矩形OCPD的面积减去△BDO和△CAO的面积即可.【题目详解】解:∵B、A两点在反比例函数的图象上,∴S△DBO=S△AOC=×2=1,∵P(2,3),∴四边形DPCO的面积为2×3=6,∴四边形BOAP的面积为6﹣1﹣1=1,故答案为:1.【题目点拨】此题主要考查了反比例函数k的几何意义,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.13、1【解题分析】

过点O作OG⊥AB,OH⊥BC,利用AAS证明△EOG≌△FOH,得到两个正方形重合部分的面积是正方形OGBH,由此得到答案.【题目详解】如图,过点O作OG⊥AB,OH⊥BC,则∠OGE=∠OHF=90°,∵四边形ABCD是正方形,∴OA=OB=OC,∠AOB=∠BOC=90°,∴OG=AB=BC=OH=1,∠GOH=90°,∵四边形A1B1C1O是正方形,∴∠A1OC1=90°,∴∠EOG=∠FOH,∴△EOG≌△FOH,∵∠ABC=∠OGB=∠OHB=90°,∴四边形OGBH是矩形,∵OG=OH,∴四边形OGBH是正方形,∴两个正方形重叠部分的面积==1,故答案为:1.【题目点拨】此题考查正方形的性质,全等三角形的性质,正方形的判定定理,熟记各定理并熟练运用解题是关键.14、【解题分析】

通过四边形ABCD是矩形以及,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.【题目详解】解:如图,设NE交AD于点K,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC∵,∴△BCE为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC,∴∠FEM=∠MFE=∠FME=60°,∴△FEM是等边三角形,FM=FE=EM=2,∵EN⊥BE,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt△KME中,KE=,∴NE=NK+KE=6+,∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+,∴BE=,∴BC=BE=,故答案为:【题目点拨】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.15、2【解题分析】

将x=2代入函数解析式可得出y的值.【题目详解】由题意得:y=2×2−2=2.故答案为:2.【题目点拨】此题考查函数值,解题关键在于将x的值代入解析式.16、1【解题分析】

由作图可知,MN为AB的垂直平分线,根据线段垂直平分线的性质得到AF=BF=6,且AE=BE,由线段中点的定义得到EG为△ABC的中位线,从而可得出结果.【题目详解】解:∵由作图可知,MN为AB的垂直平分线,∴AE=BE,=6,∴.而是的中位线,∴.故答案为:1.【题目点拨】本题考查了基本作图-作已知线段的垂直平分线:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.同时也考查了线段垂直平分线的性质以及三角形的中位线的性质.17、【解题分析】

试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-118、(-2,2)【解题分析】

根据二、四象限的角平分线上点的坐标特征得到a+3+7+a=0,然后解方程求出a的值,代入即可得出结论.【题目详解】根据题意得:a+3+7+a=0,解得:a=﹣5,∴a+3=-2,7+a=2,∴P(-2,2).故答案为:(-2,2).【题目点拨】本题考查了点的坐标.掌握二、四象限的角平分线上点的坐标特征是解答本题的关键.三、解答题(共66分)19、(1)见解析;(2)AC⊥BD【解题分析】

(1)连接BD,根据中位线的性质可得EH∥BD,EH=,FG∥BD,FG=,从而得出EH∥FG,EH=FG,然后根据平行四边形的判定定理即可证出结论;(2)当AC⊥BD时,连接AC,根据中位线的性质可得EF∥AC,从而得出EF⊥BD,然后由(1)的结论可证出EF⊥EH,最后根据有一个角是直角的平行四边形是矩形即可证出结论.【题目详解】(1)证明:连接BD∵E、F、G、H分别为四边形ABCD四边的中点∴EH是△ABD的中位线,FG是△CBD的中位线∴EH∥BD,EH=,FG∥BD,FG=∴EH∥FG,EH=FG∴四边形EFGH为平行四边形;(2)当AC⊥BD时,四边形EFGH为矩形,理由如下连接AC,∵E、F为BA和BC的中点∴EF为△BAC的中位线∴EF∥AC∵AC⊥BD∴EF⊥BD∵EH∥BD∴EF⊥EH∴∠FEH=90°∵四边形EFGH为平行四边形∴四边形EFGH为矩形故答案为:AC⊥BD.【题目点拨】此题考查的是中位线的性质、平行四边形的判定和矩形的判定,掌握中位线的性质、平行四边形的判定定理和矩形的定义是解决此题的关键.20、见解析.【解题分析】

先根据题意画出图形,写出已知,求证,然后通过平行线的性质得出∠1=∠2,再利用SAS证明△ABC≌△CDA,则有∠3=∠4,进一步得出AD∥BC,最后利用两组对边分别平行的四边形为平行四边形即可证明.【题目详解】已知:如图,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.证明:连接AC,如图所示:∵AB∥CD,∴∠1=∠2,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴∠3=∠4,∴AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).【题目点拨】本题主要考查平行四边形的判定,全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形和平行线的判定及性质是解题的关键.21、(1)A,B两款书包分别购进70和30个;(2)B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元【解题分析】

(1)此题的等量关系为:购进A款书包的数量+购进B款书包的数量=100;购进A款书包的数量×进价+购进B款书包的数量×进价=3600,设未知数,列方程求解即可.

(2)根据B款书包每天的销售利润=(B款书包的售价-B款书包的进价)×销售量y,列出w与x的函数解析式,再利用二次函数的性质,即可解答.【题目详解】(1)解:设购进A款书包x个,则B款为(100−x)个,由题意得:30x+50(100−x)=3600,解之:x=70,∴100-x=100-70=30答:A,B两款书包分别购进70和30个.(2)解:由题意得:w=y(x−50)=−(x−50)(x−90)=-x2+140x-4500,∵−1<0,故w有最大值,函数的对称轴为:x=70,而60⩽x⩽90,故:当x=70时,w有最大值为400,答:B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元.【题目点拨】考核知识点:二次函数y=a(x-h)2+k的性质,二次函数的实际应用-销售问题.22、(1);(2)S=t2﹣2t+8(0<t<2);(3).【解题分析】

由题意可得:由运动知,DP=t,AQ=2t,得出AP=4-t,BQ=4-2t,(1)判断出AQ=AP,得出2t=4-t,即可;(2)直接利用面积的和差即可得出结论;(3)先判断=,再得到,从而得出解方程即可得出结论.【题目详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,由运动知,DP=t,AQ=2t,∴AP=4﹣t,BQ=4﹣2t,(1)连接BD,如图1,∵AB=AD,∴∠ABD=∠ADB,∵PQ∥BD,∴∠ABD=∠AQP,∠APQ=∠ADB,∴∠APQ=∠AQP,∴AQ=AP,∴2t=4﹣t,∴t=;(2)S=S正方形ABCD﹣S△APQ﹣S△BCQ﹣S△CDP=AB2﹣AQ×AP﹣BQ×BC﹣DP×CD=16﹣×2t×(4﹣t)﹣×(4﹣2t)×4﹣t×4=16+t2﹣4t﹣8+4t﹣2t=t2﹣2t+8(0<t<2);(3)如图2,过点C作CN⊥PQ于N,∴S△MCQ=MQ×CN,S△MCP=MP×CN,∵S△QCM:S△PCM=3:5,∴=,∴,过点M作MG⊥AB于G,MH⊥AD于H,∵点M是正方形ABCD的对角线AC上的一点,∴MG=MH,∴S△AMQ=AQ×MG,S△APM=AP×MH,∴∴∴t=.【题目点拨】四边形综合题,主要考查了正方形的性质,平行线的性质,同高的两三角形的面积比是底的比,方程思想,解本题的关键是用方程的思想解决问题.23、(1)①y=﹣x+3,②N(0,),;(2)y=2x﹣2.【解题分析】

(1)①由矩形的性质和等腰直角三角形的性质可求得∠BAP=∠BPA=45°,从而可得BP=AB=2,进而得到点P的坐标,再根据A、P两点的坐标从而可求AP的函数解析式;②作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1),连接G'G''交y轴于N,交直线AP于M,此时△GMN周长的最小,根据点G'、G''两点的坐标,求出其解析式,然后再根据一次函数的性质即可求解;(2)根据矩形的性质以及已知条件求得PD=PA,进而求得DM=AM,根据平行四边形的性质得出PD=DE,然后通过得出△PDM≌△EDO得出点E和点P的坐标,即可求得.【题目详解】解:(1)①∵矩形OABC,OA=3,OC=2,∴A(3,0),C(0,2),B(3,2),AO∥BC,AO=BC=3,∠B=90°,CO=AB=2,∵△APD为等腰直角三角形,∴∠PAD=45°,∵AO∥BC,∴∠BPA=∠PAD=45°,∵∠B=90°,∴∠BAP=∠BPA=45°,∴BP=AB=2,∴P(1,2),设直线AP解析式y=kx+b,∵过点A,点P,∴∴,∴直线AP解析式y=﹣x+3;②如图所示:作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1)连接G'G''交y轴于N,交直线AP于M,此时△GMN周长的最小,∵G'(﹣2,0),G''(3,1)∴直线G'G''解析式y=x+当x=0时,y=,∴N(0,),∵G'G''=,∴△GMN周长的最小值为;(2)如图:作PM⊥AD于M,∵BC∥OA∴∠CPD=∠PDA且∠CPD=∠APB,∴PD=PA,且PM⊥AD,∴DM=AM,∵四边形PAEF是平行四边形∴PD=DE又∵∠PMD=∠DOE,∠ODE=∠PDM∴△PMD≌△EOD,∴OD=DM,OE=PM,∴OD=DM=MA,∵PM=2,OA=3,∴OE=2,OM=2∴E(0,﹣2),P(2,2)设直线PE的解析式y=mx+n∴∴直线PE解析式y=2x﹣2.【题目点拨】本题主要考查了求一次函数的解析式、矩形的性质、等腰三角形的性质、平行四边形的性质、对称的性质等知识点,熟练掌握基础知识正确的作出辅助线是解题的关键.24、见解析【解题分析】根据分段函数图像写出分段函数.试题分析:(1)当时甲的函数图像过点(0,0)和(3,300),此时函数为:,当x=3时甲到达B地,当时过点(3,300)和点,设此时函数为,则可得到方程组:,,解得∴时函数为:,当,y=0.(2)由图知乙的函数图像过点(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论