版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省大同矿区六校联考八年级数学第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在中,是边上的一点,射线和的延长线交于点,如果,那么的值是()A. B. C. D.2.已知样本数据,,,,,,则下列说法不正确的是()A.平均数是 B.中位数是 C.众数是 D.方差是3.一组数据:-1、2、3、1、0,则这组数据的平均数和方差分别是()A.1,1.8 B.1.8,1 C.2,1 D.1,24.正比例函数y=3x的大致图像是()A. B. C. D.5.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.226.如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.57.二次根式在实数范围内有意义,则x应满足的条件是(
)A.x≥1 B.x>1 C.x>﹣1 D.x≥﹣18.用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n个正六边形,则m,n满足的关系式是()A.2m+3n=12 B.m+n=8 C.2m+n=6 D.m+2n=69.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为,第②个图形的面积为,第③个图形的面积为,…,那么第⑥个图形面积为()A. B. C. D.10.下列图形中,中心对称图形有()A.1个 B.2个 C.3 D.4个二、填空题(每小题3分,共24分)11.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为1,5,1,1.则最大的正方形E的面积是___.12.与最简二次根式是同类二次根式,则a=__________.13.如图,四边形ABCD、DEFG都是正方形,AB与CG交于点下列结论:;;;;其中正确的有______;14.如图,在直角坐标系中,、两点的坐标分别为和,将一根新皮筋两端固定在、两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形,若反比例函数的图像恰好经过点,则的值______.15.分解因式:___.16.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).17.已知方程的一个根为,则常数__________.18.某中学组织初二学生开展篮球比赛,以班为单位单循环形式(每两班之间赛一场),现计划安排15场比赛,则共有多少个班级参赛?设有x个班级参赛,根据题意,可列方程为_____.三、解答题(共66分)19.(10分)某学校积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对所在社区的一些区域进行绿化改造,已知乙工程队每小时能完成的绿化面积是甲工程队每小时能完成的绿化面积的1.5倍,并且乙工程队完成200平方米的绿化面积比甲工程队完成200平方米的绿化面积少用2小时,甲工程队每小时能完成多少平方米的绿化面积?20.(6分)A、B两地相距120km,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即按原速返回.如图是它们离A地的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车返回时(即CD段)与之间的函数解析式;(2)若当它们行驶了2.5h时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(3)直接写出当两车相距20km时,甲车行驶的时间.21.(6分)学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD中,BC=4,AB=2,点E为AD的中点,BD和CE相交于点P.求△BPC的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适合的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点的坐标,从而可求得△BPC的面积.请你按照小明的思路解决这道思考题.22.(8分)已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,-4)且与y轴平行的直线上.23.(8分)已知y+6与x成正比例,且当x=3时,y=-12,求y与x的函数关系式.24.(8分)把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.图1图225.(10分)当a在什么范围内取值时,关于x的一元一次方程的解满足?26.(10分)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
由平行四边形的性质可得AD∥BC,AB∥CD,从而可得△EAF∽△EBC,△EAF∽△CFD,由,可得,继而可得,即可求得=.【题目详解】:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴△EAF∽△EBC,△EAF∽△CFD,∵,∴,∴,∴=,故选A.【题目点拨】本题考查了平行四边形的性质、相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方、周长比等于相似比是解题的关键.2、D【解题分析】
要求平均数只要求出数据之和再除以总个数即可;根据中位数的定义可求出;对于极差是最大值与最小值的差;方差是样本中各数据与样本平均数的差的平方和的平均数.【题目详解】在已知样本数据1,1,4,3,5中,平均数是3;
根据中位数的定义,中位数是3,众数是3方差=1.所以D不正确.
故选:D.【题目点拨】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.3、D【解题分析】
先根据平均数计算公式列出算式进行计算,再根据平均数求出方差即可.【题目详解】一组数据:-1、2、3、1、0,则平均数=,方差=,故选D.【题目点拨】本题是对数据平均数和方差的考查,熟练掌握平均数和方差公式是解决本题的关键.4、B【解题分析】∵3>0,∴图像经过一、三象限.故选B.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.5、B【解题分析】
直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【题目详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:1.故选B.【题目点拨】平行四边形的性质掌握要熟练,找到等值代换即可求解.6、C【解题分析】
∵四边形ABCD是矩形,∴AO=BO=DO=CO,AC=BD,故①③正确;∵BO=DO,∴S△ABO=S△ADO,故②正确;当∠ABD=45°时,∠AOD=90°,∴AC⊥BD,∴矩形ABCD会变成正方形,故⑤正确,而④不一定正确,矩形的对角线只是相等且互相平分,∴正确结论的个数是4.故选C.7、A【解题分析】
二次根式在实数范围内有意义的条件是被开方数大于等于0,据此列不等式求出x的范围即可.【题目详解】由题意得:x-1≥0,则x≥1
,故答案为:A.【题目点拨】本题考查二次根式有意义的条件,属于简单题,基础知识扎实是解题关键.8、D【解题分析】
正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为310°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【题目详解】正多边形的平面镶嵌,每一个顶点处的几个角之和应为310度,而正三角形和正六边形内角分别为10°、120°,根据题意可知10°×m+120°×n=310°,化简得到m+2n=1.故选D.【题目点拨】本题考查了平面镶嵌的条件,熟练掌握在每一个顶点处的几个角的和为310度是解题的关键.9、C【解题分析】
观察图形,小正方形的个数是相应序数乘以下一个数,每一个小正方形的面积是1,然后求解即可.【题目详解】解:∵第①个图形的面积为1×2×1=2,第②个图形的面积为2×3×1=6,第③个图形的面积为3×4×1=12,…,∴第⑥个图形的面积为6×7×1=42,故选:C.【题目点拨】本题考查了图形的变化类问题,解题的关键是仔细观察图形,并找到图形的变化规律.10、B【解题分析】
绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形作出判断.【题目详解】等边三角形不是中心对称图形;平行四边形是中心对称图形;圆是中心对称图形;等腰梯形不是中心对称图形.故选:B.【题目点拨】此题考查中心对称图形,解题关键在于识别图形二、填空题(每小题3分,共24分)11、2【解题分析】试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S1,S1+S1=S3,∵正方形A、B、C、D的面积分别为1,5,1,1,∵最大的正方形E的面积S3=S1+S1=1+5+1+1=2.12、1.【解题分析】
先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.【题目详解】∵与最简二次根式是同类二次根式,且=1,∴a+1=3,解得:a=1.故答案为1.【题目点拨】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.13、
【解题分析】
根据正方形的性质可得,,,然后求出,再利用“边角边”证明和全等,根据全等三角形对应边相等可得,判定正确;根据全等三角形对应角相等可得,再求出,然后求出,判定正确;根据直角三角形斜边上的中线等于斜边的一半可得,判定正确;求出点D、E、G、M四点共圆,再根据同弧所对的圆周角相等可得,判定正确;得出,判定GE错误.【题目详解】四边形ABCD、DEFG都是正方形,,,,,即,在和中,,≌,,故正确;,,,,故正确;是正方形DEFG的对角线的交点,,,故正确;,点D、E、G、M四点共圆,,故正确;,,不成立,故错误;综上所述,正确的有.故答案为.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,以及四点共圆,熟练掌握各性质是解题的关键.14、48【解题分析】
先根据已知条件得到OA=8,OB=6,由勾股定理得到根据矩形的性质即可得到结论.【题目详解】解:∵A、B两点的坐标分别为(0,8)和(6,0),
∴OA=8,OB=6,∵四边形AOBC是矩形,
∴AC=OB=6,OA=BC=8,
∴C(6,8),
反比例函数的图像恰好经过点,∴k=6,【题目点拨】本题考查了矩形的性质,坐标与图形性质,熟练掌握矩形的性质是解题的关键.15、【解题分析】
直接利用平方差公式分解因式得出即可.【题目详解】,,.故答案为:.【题目点拨】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16、乙.【解题分析】
根据方差反应了数据的波动情况,即可完成作答。【题目详解】解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。【题目点拨】本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。17、【解题分析】
将x=2代入方程,即可求出k的值.【题目详解】解:将x=2代入方程得:,解得k=.【题目点拨】本题考查了一元二次方程的解,理解方程的解是方程成立的未知数的值是解答本题的关键18、【解题分析】
设共有x个班级参赛,根据每一个球队和其他球队都打(x﹣1)场球,但每两个球队间只有一场比赛,可得总场次=×球队数×(球队数-1),据此列方程即可.【题目详解】有x个班级参赛,根据题意,得=15,故答案为:=15.【题目点拨】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.三、解答题(共66分)19、甲工程队每小时能完成平方米的绿化面积.【解题分析】
设甲工程队每小时能完成x平方米的绿化面积,则乙工程队每小时能完成1.5x平方米的绿化面积,根据工作时间=工作总量÷工作效率结合乙工程队完成200平方米的绿化面积比甲工程队完成200平方米的绿化面积少用2小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【题目详解】设甲工程队每小时能完成x平方米的绿化面积,则乙工程队每小时能完成的绿化面积是1.5x平方米,则有,解得:x=,经检验是原方程的根,所以,甲工程队每小时能完成平方米的绿化面积.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20、(1)(2)(3)【解题分析】
(1)根据题意和函数图象中的数据可以求得甲车返回时(即CD段)y与x之间的函数解析式;(2)根据题意和函数图象中的数据可以求得当它们行驶了2.5h时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(3)根据题意可以列出相应的方程,求出当两车相距20km时,甲车行驶的时间.【题目详解】(1)由题意可得,点C的坐标为,点D的坐标为设甲车返回时(即CD段)y与x之间的函数解析式为,代入点C、D可得解得即甲车返回时(即CD段)y与x之间的函数解析式为;(2)将代入,得∴点F的坐标为∴乙车的速度为,乙车从A地到B地用的时间为设一车行驶过程中y与x的函数解析式为代入点F可得解得即乙车的速度是,乙车行驶过程中y与x之间的函数解析式为;(3)设OC段对应的函数解析式为,代入点C可得解得即OC段对应的函数解析式为解得解得故答案为:.【题目点拨】本题考查了一次函数的实际应用,掌握一次函数的性质、待定系数法是解题的关键.21、见解析【解题分析】
解:如图,以为原点,为轴,为轴建立坐标系,∵,,为长方形,∴,,,∵为中点,∴,直线过,,∴的表达式为.设表达式为,将,和,代入得:,解得:,∴表达式为,联立,解得:,∴,.22、(1)(6,0);(2)(-12,-9);(3)(2,-2)【解题分析】试题分析:(1)让纵坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标-横坐标=3得m的值,代入点P的坐标即可求解;(3)让横坐标为2求得m的值,代入点P的坐标即可求解.试题解析:(1))点P在x轴上,故纵坐标为0,所以m-1=0,m=1,点P的坐标(6,0);(2)因为点P的纵坐标比横坐标大3,故(m-1)-(2m+4)=3,m=-8,点P的坐标(-12,-9);(3)点P在过A(2,-4)点,且与y轴平行的直线上,所以点P横坐标与A(2,-4)相同,即2m+4=2,m=-1,点P的坐标(2,-2)23、y=﹣2x﹣1.【解题分析】试题分析:先根据y+1与x成正比例关系,假设函数解析式,再根据已知的一对对应值,求得系数k即可.解:∵y+1与x成正比例,∴设y+1=kx(k≠0),∵当x=3时,y=﹣12,∴﹣12+1=3k,解得k=﹣2∴y+1=﹣2x,∴函数关系式为y=﹣2x﹣1.24、(1)MA=MN,MA⊥MN;(2)成立,理由详见解析【解题分析】
(1)解:连接DE,∵四边形ABCD是正方形,∴AD=CD=AB=BC,∠DAB=∠DCE=90°,∵点M是DF的中点,∴AM=DF.∵△BEF是等腰直角三角形,∴AF=CE,在△ADF与△CDE中,,∴△ADF≌△CDE(SAS),∴DE=DF.∵点M,N分别为DF,EF的中点,∴MN是△EFD的中位线,∴MN=DE,∴AM=MN;∵MN是△EFD的中位线,∴MN∥DE,∴∠FMN=∠FDE.∵AM=MD,∴∠MAD=∠ADM,∵∠AMF是△ADM的外角,∴∠AMF=2∠ADM.∵△ADF≌△CDE,∴∠ADM=∠CDE,∴∠ADM+∠CDE+∠FDE=∠FMN+∠AMF=90°,∴MA⊥MN.∴MA=MN,MA⊥MN.(2)成立.理由:连接DE.∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠1.∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE.∵△BEF是等腰直角三角形,∴BF=BF,∠EBF=90°.∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE.在△ADF与△CDE中,∴△ADF≌△CDE,∴DF=DE,∠1=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人民版九年级生物下册阶段测试试卷含答案
- 2025年华师大新版选修4化学下册阶段测试试卷含答案
- 2025年沪科版第二册生物上册月考试卷
- 2025年人教新课标七年级生物下册阶段测试试卷含答案
- 2025年粤教沪科版八年级科学上册月考试卷含答案
- 2025年沪教版九年级历史上册阶段测试试卷含答案
- 2025年新世纪版七年级物理上册阶段测试试卷含答案
- 2025年华东师大版必修3历史上册月考试卷含答案
- 2025年度网络文字处理专家劳动合同4篇
- 2025年度智能门窗系统销售安装与升级合同4篇
- 2025年度版权授权协议:游戏角色形象设计与授权使用3篇
- 心肺复苏课件2024
- 《城镇燃气领域重大隐患判定指导手册》专题培训
- 湖南财政经济学院专升本管理学真题
- 全国身份证前六位、区号、邮编-编码大全
- 2024-2025学年福建省厦门市第一中学高一(上)适应性训练物理试卷(10月)(含答案)
- 《零售学第二版教学》课件
- 广东省珠海市香洲区2023-2024学年四年级下学期期末数学试卷
- 房地产行业职业生涯规划
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- MOOC 数字电路与系统-大连理工大学 中国大学慕课答案
评论
0/150
提交评论