北京市西城区北京师范大附属中学2024届数学八年级第二学期期末达标检测试题含解析_第1页
北京市西城区北京师范大附属中学2024届数学八年级第二学期期末达标检测试题含解析_第2页
北京市西城区北京师范大附属中学2024届数学八年级第二学期期末达标检测试题含解析_第3页
北京市西城区北京师范大附属中学2024届数学八年级第二学期期末达标检测试题含解析_第4页
北京市西城区北京师范大附属中学2024届数学八年级第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城区北京师范大附属中学2024届数学八年级第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若分式x2x-2有意义,则A.x≠0 B.x=2 C.x>2 D.x≠22.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为()A.6 B.5 C.4 D.33.下列各组数是勾股数的是()A. B.1,1, C. D.5,12,134.下列各组数中,不是勾股数的是()A.3,4,5 B.5,12,13 C.6,8,10 D.7,13,185.下列是最简二次根式的是A. B. C. D.6.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.77.将方程化成一元二次方程的一般形式,正确的是().A. B. C. D.8.如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为()A.2 B.C. D.19.在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,则图形与原图形相比()A.向右平移了5个单位长度 B.向左平移了5个单位长度C.向上平移了5个单位长度 D.向下平移了5个单位长度10.如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx的解集为()A.x>2 B.x<2 C.x>-4 D.x<-411.下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式12.下列四组线段中,能组成直角三角形的是A.,, B.,,C.,, D.,,二、填空题(每题4分,共24分)13.在菱形ABCD中,M是AD的中点,AB=4,N是对角线AC上一动点,△DMN的周长最小是2+,则BD的长为___________.14.在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是___分.15.如图,已知矩形的面积为,依次取矩形各边中点、、、,顺次连结各中点得到第个四边形,再依次取四边形各边中点、、、,顺次连结各中点得到第个四边形,……,按照此方法继续下去,则第个四边形的面积为________.16.①412=_________;②3-27=17.矩形(非正方形)四个内角的平分线围成的四边形是__________形.(埴特殊四边形)18.如图,已知,AD平分于点E,,则BC=___cm。三、解答题(共78分)19.(8分)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.(1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是,CE与AD的位置关系是.(2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图2,连接BE,若AB=2,BE=2,求AP的长.20.(8分)如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.(1)求证:四边形EGFH为平行四边形;(2)当=时,四边形EGFH为矩形.21.(8分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,ND=1.①求MC的长.②求MN的长.22.(10分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离(千米)和所用的时间(小时)之间的函数关系如图所示。(1)小李从乙地返回甲地用了多少小时?(2)求小李出发小时后距离甲地多远?23.(10分)如图,在直角坐标系中,点在第一象限,轴于,轴于,,,有一反比例函数图象刚好过点.(1)分别求出过点的反比例函数和过,两点的一次函数的函数表达式;(2)直线轴,并从轴出发,以每秒个单位长度的速度向轴正方向运动,交反比例函数图象于点,交于点,交直线于点,当直线运动到经过点时,停止运动.设运动时间为(秒).①问:是否存在的值,使四边形为平行四边形?若存在,求出的值;若不存在,说明理由;②若直线从轴出发的同时,有一动点从点出发,沿射线方向,以每秒个单位长度的速度运动.是否存在的值,使以点,,,为顶点的四边形为平行四边形;若存在,求出的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.24.(10分)(1)解不等式组:(2)化简:.25.(12分)如图,点、、、是四边形各边的中点,、是对角线,求证:四边形是平行四边形.26.为了节约能源,某城市开展了节约水电活动,已知该城市共有10000户家庭,活动前,某调查小组随机抽取了部分家庭每月的水电费的开支(单位:元),结果如左图所示频数直方图(每一组含前一个边界值,不含后一个边界值);活动后,再次调查这些家庭每月的水电费的开支,结果如表所示:(1)求所抽取的样本的容量;(2)如以每月水电费开支在225元以下(不含)为达到节约标准,请问通过本次活动,该城市大约增加了多少户家庭达到节约标准?(3)活动后,这些样本家庭每月水电费开支的总额能否低于6000元?(4)请选择一个适当的统计量分析活动前后的相关数据,并评价节约水电活动的效果.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

本题主要考查分式有意义的条件:分母不能为1.【题目详解】解:由代数式有意义可知:x﹣2≠1,∴x≠2,故选:D.【题目点拨】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.2、C【解题分析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD==4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.3、D【解题分析】

欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【题目详解】A.()2+()2≠()2不能构成直角三角形,不是正整数,故不是勾股数.B.()2+()2=()2能构成直角三角形,不是正整数,故不是勾股数;C.()2+()2=()2能构成直角三角形,不是正整数,故不是勾股数;D.()2+()2=()2能构成直角三角形,是正整数,故是勾股数.故答案选D【题目点拨】此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4、D【解题分析】

根据勾股定理的逆定理,验证两小边的平方和是否等于最长边的平方即可得.【题目详解】A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、52+122=132,能构成直角三角形,是正整数,故是勾股数;C、62+82=102,能构成直角三角形,是正整数,故是勾股数;D、72+132≠182,不能构成直角三角形,故不是勾股数,故选D.【题目点拨】本题考查了勾股定理的逆定理,勾股数问题,给三个正整数,看两个较小的数的平方和是否等于最大数的平方,若相等,则这三个数为勾股数,否则就不是.5、B【解题分析】

根据最简二次根式的定义即可判断.【题目详解】A.=2,故不是最简二次根式;B.是最简二次根式;C.根式含有分数,不是最简二次根式;D.有可以开方的m2,不是最简二次根式.故选B.【题目点拨】此题主要考查最简二次根式的判断,解题的关键是熟知最简二次根式的定义.6、C【解题分析】

观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【题目详解】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,,解得:,∴y=10x(0≤x≤2);当x>2时,将(2,20),(4,36)代入y=kx+b中,,解得:,∴y=8x+4(x≥2).当x=1时,y=10x=10,当x=5时,y=44,10×5-44=6(元),故选C.【题目点拨】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.7、B【解题分析】

通过移项把方程4x2+5x=81化成一元二次方程的一般形式.【题目详解】方程4x2+5x=81化成一元二次方程的一般形式是4x2+5x-81=1.故选B.【题目点拨】此题主要考查了一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=1(a≠1).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.8、B【解题分析】

直接利用三角形的中位线定理得出,且,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【题目详解】连接DE∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点∴DE是△ABC的中位线,∴,且,∵EF⊥AC于点F∴,∴故根据勾股定理得∵G为EF的中点∴∴故答案为:B.【题目点拨】本题考查了三角形的线段长问题,掌握中位线定理、勾股定理是解题的关键.9、B【解题分析】因为纵坐标不变,横坐标减5,相当于点向左平移了5个单位,故选B.10、B【解题分析】

从图象确定kx+b>mx时,x的取值范围即可.【题目详解】解:从图象可以看出,当x<2时,kx+b>mx,故选:B.【题目点拨】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.11、C【解题分析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【题目详解】解:A、调查你所在班级同学的身高,应采用全面调查方式,故方法不合理,故此选项错误;B、调查市场上某品牌电脑的使用寿命,采用普查的方式,方法不合理,故此选项错误;C、查嘉陵江的水质情况,采用抽样调查的方式,方法合理,故此选项正确;D、要了解全国初中学生的业余爱好,采用普查的方式,方法不合理,故此选项错误;故选C.【题目点拨】本题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、D【解题分析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】A.1²+2²≠3²,故不是直角三角形,故本选项错误;

B.2²+3²≠4²故不是直角三角形,故本选项错误;

C.2²+4²≠5²,故不是直角三角形,故本选项错误;

D.3²+4²=5²,故是直角三角形,故本选项正确.

故选D.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题(每题4分,共24分)13、4【解题分析】

根据题意,当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,由DM=,则BM=,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD为等边三角形,即可得到BD的长度.【题目详解】解:如图:连接BD,BM,则AC垂直平分BD,则BN=DN,当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,∵AD=AB=4,M是AD的中点,∴AM=DM=,∴BM=,∵,∴△ABM是直角三角形,即∠AMB=90°;∵BM是△ABD的中线,∴△ABD是等边三角形,∴BD=AB=AD=4.故答案为:4.【题目点拨】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD是等边三角形.14、1【解题分析】

根据图象写出这组数据,再根据一组数据中出现次数最多的数据叫做众数求解.【题目详解】解:由图可得,

这组数据分别是:24,24,1,1,1,30,

∵1出现的次数最多,

∴这组数据的众数是1.

故答案为:1.【题目点拨】本题考查折线统计图和众数,解答本题的关键是明确众数的定义,利用数形结合的思想解答.15、【解题分析】

根据矩形ABCD的面积、四边形A1B1C1D1面积、四边形A2B2C2D2的面积、四边形A3B3C3D3的面积,即可发现中点四边形的面积等于原四边形的面积的一半,找到规律即可解题.【题目详解】解:顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,则四边形A1B1C1D1的面积为矩形ABCD面积的,顺次连接四边形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为四边形A1B1C1D1面积的一半,即为矩形ABCD面积的,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,即为矩形ABCD面积的,故中点四边形的面积等于原四边形的面积的一半,则四边形AnBnCnDn面积为矩形ABCD面积的,又∵矩形ABCD的面积为1,∴四边形AnBnCnDn的面积=1×=,故答案为:.【题目点拨】本题考查了中点四边形以及矩形的性质的运用,找到连接矩形、菱形中点所得的中点四边形的面积为原四边形面积的一半是解题的关键.16、①322,②-3,③4x【解题分析】

①根据二次根式的性质化简即可解答②根据立方根的性质计算即可解答③根据积的乘方,同底数幂的除法,进行计算即可解答【题目详解】①412=②3-27③(2x)2⋅x3÷【题目点拨】此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则17、正方【解题分析】

此类题根据矩形性质,三角形内角和定理及角平分线定义得到所求的四边形的各个角为90°,进而求解.【题目详解】∵AF,BE是矩形的内角平分线.

∴∠ABF=∠BAF-90°.

故∠1=∠2=90°.

同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.

又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,

∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.

∴OD=OC,△AMD≌△BNC,

∴NC=DM,

∴NC-OC=DM-OD,

即OM=ON,

∴矩形GMON为正方形,

故答案为正方.【题目点拨】本题考查的是矩形性质,角平分线定义,联系三角形内角和的知识可求解.18、1【解题分析】

过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,然后求出CD、BD的长度,即可得解.【题目详解】解:如图,过点D作DE⊥AB于E,

∵点D到AB的距离等于5cm,

∴DE=5cm,

∵AD平分∠BAC,∠C=90°,

∴DE=CD=5cm,

∵BD=2CD,

∴BD=2×5=10cm,

∴BC=CD+BD=5+10=1cm.

故答案为:1.【题目点拨】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.三、解答题(共78分)19、(1)BP=CE,CE⊥AD;(2)结论仍然成立,理由见解析;(3)2【解题分析】

(1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一可得CE⊥AD.(2)结论不变.证明过程同(1).(3)在Rt△AOP中,求出OA,OP即可解决问题.【题目详解】(1)BP=CE,CE⊥AD.理由:∵菱形ABCD中,∠ABC=60°∴AB=BC=CD=AD,∠ADC=∠ABC=60°∴△ABC、△ACD是等边三角形∴AB=AC,AC=CD,∠BAC=∠ACD=60°∵△APE是等边三角形∴AP=AE,∠PAE=60°∴∠BAC-∠PAC=∠PAE-∠PAC即∠BAP=∠CAE,∴△BAP≌△CAE(SAS)∴BP=CE,∠ABP=∠ACE∵BD平分∠ABC∴∠ACE=∠ABP=∠ABC=30°∴CE平分∠ACD∴CE⊥AD.故答案为BP=CE,CE⊥AD.(2)结论仍然成立.理由如下:如图,设CE交AD于H,连接AC.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°.∴△BAP≌△CAE.∴BP=CE,∠ABP=∠ACE=30°.∵∠CAH=60°,∴∠CAH+∠ACH=90°.∴∠AHC=90°,即CE⊥AD.(3)如图,连接BE,由(2)可知CE⊥AD,BP=CE.在菱形ABCD中,AD∥BC,∴CE⊥BC.∵BC=AB=2,BE=2,在Rt△BCE中,CE==1.∴BP=CE=1.∵AC与BD是菱形的对角线,∴∠ABD=∠ABC=30°,AC⊥BD.∴OA=AB=,BO==3,∴OP=BP-BO=5,在Rt△AOP中,AP==2,【题目点拨】本题考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理.第(2)题的证明过程可由(1)适当转化而得,第(3)题则可直接运用(2)的结论解决问题.20、(1)见解析;(2)当时,平行四边形EGFH是矩形,理由见解析.【解题分析】

(1)可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.(2)证出四边形ABFE是菱形,得出AF⊥BE,即∠EGF=90°,即可得出结论.【题目详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E.F分别是AD、BC的中点∴AE=ED=AD,BF=FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.(2)当时,平行四边形EGFH是矩形.理由如下:连接EF,如图所示:由(1)同理可证四边形ABFE是平行四边形,当时,即BC=2AB,AB=BF,∴四边形ABFE是菱形,∴AF⊥BE,即∠EGF=90∘,∴平行四边形EGFH是矩形.【题目点拨】全等三角形的判定与性质,平行四边形的判定与性质,矩形的判定.对于问题(1)利用两组对边分别平行的四边形是平行四边形证明四边形EGFH是平行四边形,在这个过程中可证明四边形AECF和四边形BFDE是平行四边形是平行四边形;对于问题(2)再(1)的基础上只需要证明有一个角是直角即可,这里借助菱形的对角线互相垂直平分,只需要证明四边形ABFE是菱形即可.21、(1)证明见解析;(2)①MC=3;②MN=2.【解题分析】

(1)根据折叠可得∠AMN=∠CMN,再根据平行可得∠ANM=∠CMN,可证CM=CN

(2)①根据等高的两个三角形的面积比等于边的比,可求MC的长.

②作NF⊥MC,可得矩形NFCD,根据勾股定理可求CD,则可得NF,MF,再根据勾股定理可求MN的长.【题目详解】解:(1)∵折叠∴CM=AM,CN=AN,∠AMN=∠CMN∵ABCD是矩形∴AD∥BC∴∠ANM=∠CMN∴∠ANM=∠AMN∴CM=CN(2)①∵AD∥BC∴△CMN和△CDN是等高的两个三角形∴S△CMN:S△CDN=3:1=CM:DN且DN=1∴MC=3②∵CM=CN∴CN=3且DN=1∴根据勾股定理CD=2如图作NF⊥MC∵NF⊥MC,∠D=∠DCB=90°∴NFCD是矩形∴NF=CD=2,FC=DN=1∴MF=2在Rt△MNF中,MN==2【题目点拨】此题考查了矩形的性质、折叠的性质、勾股定理以及三角形的面积.此题难度适中,注意掌握辅助线的作法,掌握数形结合思想与方程思想的应用.22、(1)小时;(2)小李出发小时后距离甲地千米;【解题分析】

(1)根据题意可以得到小李从乙地返回甲地用了多少小时;(2)根据题意可以求得小李返回时对应的函数解析式,从而可以求得小李出发5小时后距离甲地的距离;【题目详解】解:(1)由题意可得,(小时),答:小李从乙地返回甲地用了小时;(2)设小李返回时直线解析式为,将分别代入得,,解得,,,当时,,答:小李出发小时后距离甲地千米;【题目点拨】此题考查一次函数的应用,解题关键在于列出方程23、(1),;(2)①不存在,理由详见解析;②存在,【解题分析】

(1)先确定A、B、C的坐标,然后用待定系数法解答即可;(2)①可用t的代数式表示DF,然后根据DF=BC求出t的值,得到DF与CB重合,因而不存在t,使得四边形DFBC为平行四边形;②可分两种情况(点Q在线段BC上和在线段BC的延长线上)讨论,由于DE∥QC,要使以点D、E、Q、C为顶点的四边形为平行四边形,只需DE=QC,只需将DE、QC分别用的式子表示,再求出t即可解答.【题目详解】解:(1)由题意得,,,反比例函数为,一次函数为:.(2)①不存在.轴,轴,.又四边形是平行四边形,.设,则,,.此时与重合,不符合题意,不存在.②存在.当时,;当时,由,,得.由,.得.当时,四边形为平行四边形..,(舍)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论