




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省(同盛地区)2024届数学八年级第二学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若b>0,则一次函数y=﹣x+b的图象大致是()A. B. C. D.2.使得关于x的不等式组有解,且关于x的方程的解为整数的所有整数a的和为()A.5 B.6 C.7 D.103.下列各组数据中的是三个数作为三角形的边长,其中能构成直角三角形的是()A.1,2,3 B.3,4,5 C.5,6,7 D.74.下列对一次函数y=﹣2x+1的描述错误的是()A.y随x的增大而减小B.图象经过第二、三、四象限C.图象与直线y=2x相交D.图象可由直线y=﹣2x向上平移1个单位得到5.已知△ABC的边长分别为5,7,8,则△ABC的面积是()A.20 B.10 C.10 D.286.在四边形中,,再补充一个条件使得四边形为菱形,这个条件可以是()A. B.C. D.与互相平分7.△ABC中,若AC=4,BC=2,AB=2,则下列判断正确的是()A.∠A=60° B.∠B=45° C.∠C=90° D.∠A=30°8.下面四个美术字中可以看作轴对称图形的是()A. B. C. D.9.如图,在平行四边形中,于点E,以点B为中心,取旋转角等于,将顺时针旋转,得到.连接,若,,则的度数为()A. B. C. D.10.(2017广西贵港第11题)如图,在中,,将绕顶点逆时针旋转得到是的中点,是的中点,连接,若,则线段的最大值是()A. B. C. D.11.为了解某班学生双休日户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A. B.C. D.12.已知:四边形ABCD的对角线AC、BD相交于点O,则下列条件不能判定四边形ABCD是平行四边形的是A., B.,C., D.,二、填空题(每题4分,共24分)13.如图,矩形中,是上一点(不与重合),点在边上运动,分别是的中点,线段长度的最大值是__________.14.2019年6月12日,重庆直达香港高铁的车票正式开售据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高在此之前技术部门做了大量测试,在一次测试中一高铁列车从地出发匀速驶向地,到达地停止;同时一普快列车从地出发,匀速驶向地,到达地停止且,两地之间有一地,其中,如图①两列车与地的距离之和(千米)与普快列车行驶时间(小时)之间的关系如图②所示则高铁列车到达地时,普快列车离地的距离为__________千米.15.如图,已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,若AB=6,则OE=_____.16.如图,在直角三角形中,,、、分别是、、的中点,若=6厘米,则的长为_________.17.如图,一次函数与的图的交点坐标为(2,3),则关于的不等式的解集为_____.18.2018年6月1日,美国职业篮球联赛(NBA)总决赛第一场在金州勇士队甲骨文球馆进行.据统计,当天通过腾讯视频观看球赛的人数突破5250万.用科学记数法表示“5250”为_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线的顶点.(1)当时,求该抛物线下方(包括边界)的好点个数.(2)当时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.20.(8分)未成年人思想道德建设越来越受到社会的关注.某青少年研究机构随机调查了某校100名学生寒假花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了如下的频数分布表(部分空格未填).某校100名学生寒假花零花钱数量的频数分布表:(1)完成该频数分布表;(2)画出频数分布直方图.(3)研究认为应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1200学生中约多少名学生提出该项建议?21.(8分)如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.22.(10分)已知关于的一元二次方程,(1)求证:无论m为何值,方程总有两个不相等的实数根;(2)当m为何值时,该方程两个根的倒数之和等于1.23.(10分)如图,在中,D是BC的中点,E是AD的中点,过点A作,AF与CE的延长线相交于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)①若四边形AFBD是矩形,则必须满足条件_________;②若四边形AFBD是菱形,则必须满足条件_________.24.(10分)阳光小区附近有一块长100m,宽80m的长方形空地,在空地上有两条相同宽度的步道(一纵一横)和一个边长为步道宽度7倍的正方形休闲广场,两条步道的总面积与正方形休闲广场的面积相等,如图1所示.设步道的宽为a(m).(1)求步道的宽.(2)为了方便市民进行跑步健身,现按如图2所示方案增建塑胶跑道.己知塑胶跑道的宽为1m,长方形区域甲的面积比长方形区域乙大441m2,且区域丙为正方形,求塑胶跑道的总面积.25.(12分)如图,在平面直角坐标系中,A9m,0、Bm,0m0,以AB为直径的⊙M交y轴正半轴于点C,CD是⊙M的切线,交x轴正半轴于点D,过A作AECD于E,交⊙于F.(1)求C的坐标;(用含m的式子表示)(2)①请证明:EFOB;②用含m的式子表示AFC的周长;(3)若,,分别表示的面积,记,对于经过原点的二次函数,当时,函数y的最大值为a,求此二次函数的解析式.26.两地相距300,甲、乙两车同时从地出发驶向地,甲车到达地后立即返回,如图是两车离地的距离()与行驶时间()之间的函数图象.(1)求甲车行驶过程中与之间的函数解析式,并写出自变量的取值范围.(2)若两车行驶5相遇,求乙车的速度.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】分析:根据一次函数的k、b的符号确定其经过的象限即可确定答案.详解:∵一次函数中∴一次函数的图象经过一、二、四象限,故选C.点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.2、C【解题分析】
根据不等式组的解集的情况求得a的解集,再解分式方程得出x,根据x是整数得出a所有的a的和.【题目详解】不等式组整理得:,由不等式组有解,得到a>-1,分式方程去分母得:(a-1)x=4,解得:x=,由分式方程的解为整数,得到a-1=-1,-2,2,-4,1,4,解得:a=0,-1,-3,3,2,5,∴a=0,2,3,5,∵x≠2,∴≠2,∴a≠3,∴a=0,2,5则所有整数a的和为7,故选C.【题目点拨】本题考查了分式方程的解以及不等式的解集,求得a的取值范围以及解分式方程是解题的关键.3、A【解题分析】
根据勾股定理的逆定理逐项分析即可.【题目详解】解:A、∵12+(2)2=(3)2,∴能构成直角三角形;B、(3)2+(4)2≠(5)2,∴不能构成直角三角形;C、52+62≠72,∴不能构成直角三角形;D、∵72+82≠92,∴不能构成直角三角形.故选:A.【题目点拨】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.4、B【解题分析】分析:根据一次函数的性质,通过判断k和b的符号来判断函数所过的象限及函数与x轴y轴的交点.详解:在y=﹣2x+1中,∵k=﹣2<0,∴y随x的增大而减小;∵b=1>0,∴函数与y轴相交于正半轴,∴可知函数过第一、二、四象限;∵k=﹣2≠2,∴图象与直线y=2x相交,直线y=﹣2x向上平移1个单位,得到函数解析式为y=﹣2x+1.故选B.点睛:本题考查了一次函数的性质,知道系数和图形的关系式解题的关键.5、C【解题分析】
过A作AD⊥BC于D,根据勾股定理列方程得到BD,然后根据三角形的面积公式即可得到结论.【题目详解】如图,∵AB=5,AC=7,BC=8,过A作AD⊥BC于D,∴AB2-BD2=AC2-CD2=AD2,∴52-BD2=72-(8-BD)2,解得:BD=,∴AD=,∴△ABC的面积=10,故选C.【题目点拨】本题考查了勾股定理,三角形的面积的计算,熟练掌握勾股定理是解题的关键.6、D【解题分析】
由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.【题目详解】解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形,故选:D.【题目点拨】此题考查了平行四边形的判定以及菱形的判定.此题比较简单,注意掌握对角线互相垂直的平行四边形是菱形定理的应用.7、A【解题分析】
先利用勾股定理的逆定理得出∠B=90°,再利用三角函数求出∠A、∠C即可.【题目详解】∵△ABC中,AC=4,BC=2,AB=2,∴=2+,即=+,∴△ABC是直角三角形,且∠B=90°,∵AC=2AB,∴∠C=30°,∴∠A=90°-∠C=60°.故选:A.【题目点拨】本题考查了勾股定理的逆定理、含30度角的直角三角形的性质,如果三角形的三边长满足,那么这个三角形就是直角三角形.求出∠B=90°是解题的关键.8、D【解题分析】
根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【题目详解】四个汉字中只有“善”字可以看作轴对称图形.故选D.【题目点拨】本题考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.9、D【解题分析】
根据平行四边形的性质得∠ABC=∠ADC=60°,AD∥BC,则根据平行线的性质可计算出∠DA′B=130°,接着利用互余计算出∠BAE=30°,然后根据旋转的性质得∠BA′E′=∠BAE=30°,于是可得∠DA′E′=160°.【题目详解】解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=60°,AD∥BC,∴∠ADA′+∠DA′B=180°,∴∠DA′B=180°−50°=130°,∵AE⊥BE,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=130°+30°=160°.故答案为:D.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的性质.10、B【解题分析】试题解析:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.11、A【解题分析】分析:根据中位数、平均数和众数的概念求解即可.详解:∵共10人,∴中位数为第5和第6人的平均数,∴中位数=(3+3)÷3=5;平均数=(1×2+2×2+3×4+6×2)÷10=3;众数是一组数据中出现次数最多的数据,所以众数为3.故选:A.点睛:本题考查平均数、中位数和众数的概念.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.12、B【解题分析】
平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形,(2)两组对边分别相等的四边形是平行四边形,(3)一组对边平行且相等的四边形是平行四边形,(4)两组对角分别相等的四边形是平行四边形,(5)对角线互相平分的四边形是平行四边形,根据平行四边形的判定即可解答.【题目详解】A选项,,,根据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,B选项,不能判定四边形是平行四边形,C选项,,根据对角线互相平分的四边形是平行四边形,能判定四边形ABCD是平行四边形,D选项,,根据两组对角分别相等的四边形是平行四边形能判定四边形ABCD是平行四边形,故选B.【题目点拨】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.二、填空题(每题4分,共24分)13、5【解题分析】
根据矩形的性质求出AC,然后求出AP的取值范围,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP.【题目详解】解:∵矩形ABCD中,AB=6,BC=8,
∴对角线AC=10,∵P是CD边上的一动点,
∴8≤AP≤10,
连接AP,
∵M,N分别是AE、PE的中点,
∴MN是△AEP的中位线,
∴,MN=AP.∴MN最大长度为5.【题目点拨】本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的取值范围是解题的关键.14、1【解题分析】
由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为1千米,由于V高铁=2V普快,因此BC距离为1千米的三分之二,即240千米,普快离开C占的距离为1千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=1千米,此时距A站的距离为720-1=1千米.【题目详解】∵图象过(4.5,0)
∴高铁列车和普快列车在C站相遇
∵AC=2BC,
∴V高铁=2V普快,
BC之间的距离为:1×=240千米,全程为AB=240+240×2=720千米,
此时普快离开C站1×=120千米,
当高铁列车到达B站时,普快列车距A站的距离为:720-120-240=1千米,
故答案为:1.【题目点拨】此题考查一次函数的应用.解题关键是由函数图象得出相关信息,明确图象中各个点坐标的实际意义.联系行程类应用题的数量关系是解决问题的关键,图象与实际相结合容易探求数量之间的关系,也是解决问题的突破口.15、3【解题分析】
根据平行四边形的对角线互相平分可得OA=OC,然后判断出OE是三角形的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OE=AB.【题目详解】解:在▱ABCD中,OA=OC,∵点E是BC的中点,∴OE是三角形的中位线,∴OE=AB=3故答案为3【题目点拨】本题考查了平行四边形的性质和三角形中位线定理,平行四边形对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.16、6厘米【解题分析】
根据直角三角形斜边中线等于斜边一半算出AB,再根据中位线的性质求出EF即可.【题目详解】∵∠BCA=90°,且D是AB的中点,CD=6,∴AB=2CD=12,∵E、F是AC、BC的中点,∴EF=.故答案为:6厘米【题目点拨】本题考查直角三角形中线的性质、中位线的性质,关键在于熟练掌握相关基础知识.17、x<2.【解题分析】
根据不等式与函数的关系由图像直接得出即可.【题目详解】由图可得关于的不等式的解集为x<2.故填:x<2.【题目点拨】此题主要考查函数与不等式的关系,解题的关键是熟知函数的性质.18、5.25×1【解题分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:5250=5.25×1,故答案为5.25×1.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题(共78分)19、(1)好点有:,,,和,共5个;(2),和;(3).【解题分析】
(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可;(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题;(3)如图3中,抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时Dm的值,即可判断.【题目详解】解:(1)当时,二次函数的表达式为画出函数图像(图1)图1当时,;当时,抛物线经过点和好点有:,,,和,共5个(2)当时,二次函数的表达式为画出函数图像(图2)图2当时,;当时,;当时,该抛物线上存在好点,坐标分别是,和(3)抛物线顶点P的坐标为点P支直线上由于点P在正方形内部,则如图3,点,图3当顶点P支正方形OABC内,且好点恰好存在8个时,抛物线与线段EF有交点(点F除外)当抛物线经过点时,解得:,(舍去)当抛物线经过点时,解得:,(舍去)当时,顶点P在正方形OABC内,恰好存在8个好点【题目点拨】本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题.20、(1)见解析;(2)见解析;(3)540名.【解题分析】
(1)用100乘以频率求出0.5-50.5范围的频数,根据频率之和为1,求出100.5-150.5范围的频率和频数,最后根据每个范围中两整数部分的平均数得出组中值,填表即可;(2)依据频数分布直方图的画法作图;(3)求出150元以上的频率之和,再乘以1200即可得到结果.【题目详解】解:(1)100×0.1=10,,100-(10+20+30+10+5)=25,,,如图:(2)如图所示:(3)1200×(0.3+0.1+0.05)=540(名)答:估计应对该校1200学生中约540名学生提出该项建议.【题目点拨】本题考查了读频数(频率)分布直方图的能力、频数分布直方图的画法和用样本估计总体的知识,弄懂题意是解题的关键.21、(1)详见解析;(2)【解题分析】
(1)由∠EAF=∠GAC.可得∠EAG=∠DAF且AG⊥BC,AM⊥DE可得∠ADF=∠B,且∠EAD=∠BAC可证:△ADE∽△ABC;(2)利用相似的性质得出,AB=BE+AE=4+3=7,即可解答【题目详解】(1)证明:AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∴∠AEF+∠EAF=90°,∠GAC+∠ACG=90°,∵∠EAF=∠GAC,∴∠AEF=∠ACG,∵∠EAD=∠CAB,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴,∵AD=BE=4,AE=3,∴AB=BE+AE=4+3=7,∴,解得:AC=,∴CD=AC﹣AD=﹣4=.【题目点拨】此题考查三角形相似的判定与性质,解题关键在于掌握判定法则22、(2)见解析(2)【解题分析】
(2)根据方程的系数结合根的判别式,可得出△=2m2+4>0,进而即可证出:方程总有两个不相等的实数根;
(2)利用根与系数的关系列式求得m的值即可.【题目详解】证明:△=(m+2)2-4×2×(m-2)=m2+2.
∵m2≥0,
∴m2+2>0,即△>0,
∴方程总有两个不相等的实数根.
(2)设方程的两根为a、b,
利用根与系数的关系得:a+b=-m-2,ab=m-2
根据题意得:=2,
即:=2
解得:m=-,
∴当m=-时该方程两个根的倒数之和等于2.【题目点拨】本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.23、(1)见解析;(2)①AB=AC;②∠BAC=90°【解题分析】
(1)先证明△AEF≌△DEC,得出AF=DC,再根据有一组对边平行且相等证明四边形AFBD是平行四边形;(2))①当△ABC满足条件AB=AC时,可得出∠BDA=90°,则四边形AFBD是矩形;②当∠BAC=90°时,可得出AD=BD,则四边形AFBD是菱形。【题目详解】解:(1)∵E是AD中点∴AE=DE,
∵AF∥BC,∴∠AFE=∠DCE,
∵∠AEF=∠DEC,∴△AEF≌△DEC∴AF=DC,
∵D是BC中点,∴BD=DC,∴AF=BD,
又∵AF∥BC,即AF∥BD,∴四边形AFBD是平行四边形;(2)①当△ABC满足条件AB=AC时,四边形AFBD是矩形;理由是:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠BDA=90°∵四边形AFBD是平行四边形,∴四边形AFBD是矩形.故答案为:AB=AC②当∠BAC=90°时,四边形AFBD是菱形。理由是:∵∠BAC=90°,D是BC中点,∴AD=BC=BD,∵四边形AFBD是平行四边形,∴四边形AFBD是菱形。故答案为:∠BAC=90°【题目点拨】本题主要考查平行四边形、矩形、菱形的判定,熟练掌握判定定理是关键,基础题要细心.24、(1)3.1m(2)199m2【解题分析】
(1)步道宽度为a,则正方形休闲广场的边长为7a,根据两条步道总面积等于休闲广场面积列方程求解即可.其中注意两条步道总面积要减去重叠部分的小正方形面积.(2)根据空地的长度和宽度,道路和塑胶的宽度以及丙的边长,计算出甲、乙区域长之差,因两区域的宽度相等,根据面积之差等于长度之差乘以宽度,求得宽度,即正方形丙的边长,塑胶跑道的总面积等于总长度乘以塑胶宽度,总长度等于空地长宽之和加丙的一边长,再减去有两次重复相加的塑胶宽度.【题目详解】(1)解:由题意,得100a+80a-a2=(7a)2,化简,得a2=3.1a,∵a>0,∴a=3.1.答:步道的宽为3.1m.(2)解:如图,由题意,得AB-DE=100-80+1=21(m),∴BC=EF==21(m).∴塑胶跑道的总面积为1×(100+80+21-2)=199(m2).【题目点拨】本题考查了一元二次方程的实际应用,在求相交跑道或小路面积时一定不能忽视重叠的部分,正确理解题意是解题的关键,25、(1)C(0,3m);(2)①证明见解析;②8m+;(3)或【解题分析】
(1)连接MC,先得出MC=5m,MO=4m,再由勾股定理得出OC=3m,即可得出点C的坐标;(2)①由弦切角定理得∠ECF=∠EAC,再证出FC=BC,再证出△CEF≌△COB,可得到EF=OB;②由△CEF≌△COB可得AE=AO,用勾股定理求出AC、BC.再用等量代换计算可得到AFC的周长(3)先用三角函数求出OD,再用勾股定理列出方程,得到m=1,从而求得的面积,再求出k值。再根据二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 在全镇第二批保持共产党员先进性教育活动第一阶段转段动员大会上的讲话
- 网络监管平台加强机关效能建设的调查
- 云南省玉溪市2023-2024学年高二下学期期末教学质量检测语文试卷(含答案)
- 2025建筑工程施工合同范本
- 江苏开放大学2025年春财务报表分析第二次模拟练习题
- 河南省项城市2024~2025学年 高三下册第一次考试数学试卷附解析
- 贵州省六校联考2024~2025学年 高三下册3月月考数学试卷附解析
- 福建省龙岩市2024~2025学年 高二下册第一次月考(2月)数学试卷附解析
- 2025年中考语文(长沙用)课件:主题5 最是激荡‘长沙红’演讲比赛
- 石家庄赵县城市管理综合行政执法局招聘笔试真题2024
- 30题投资管理类岗位常见面试问题含HR问题考察点及参考回答
- 15D501 建筑物防雷设施安装
- 世界500强CFO的财务管理笔记2
- 申请提取住房公积金个人授权、承诺书(样表)
- 小动物外科手术学-浙江大学中国大学mooc课后章节答案期末考试题库2023年
- 物流公司运输安全管理制度
- 三个合伙人分配合同范本
- PLC课程设计-四人抢答器
- 化妆品生产工艺及流程图
- 提高住院患者临床路径占比PDCA
- “四电”工程施工工艺标准
评论
0/150
提交评论