2024届河北省张家口市名校八年级数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届河北省张家口市名校八年级数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届河北省张家口市名校八年级数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届河北省张家口市名校八年级数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届河北省张家口市名校八年级数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省张家口市名校八年级数学第二学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,为矩形的对角线的中点,过点作的垂线分别交、于点、,连结.若该矩形的周长为20,则的周长为()A.10 B.9 C.8 D.52.下列式子中为最简二次根式的是()A. B. C. D.3.小明和小莉同时从学校出发,按相同路线去图书馆,小明骑自行车前往,小莉前一半路程先乘坐公共汽车到图书馆站,然后步行剩下的路程走到图书馆.已知小明骑车的速度是小莉步行速度的2倍,小莉乘坐公共汽车的速度是小明骑车速度的2倍.则比较小明与小莉到达图书馆需要的时间是()A.一样多 B.小明多 C.小莉多 D.无法确定4.下列图形中既是轴对称图形又是中心对称图形的是().A. B. C. D.5.如图,在中,对角线,交于点.若,,,则的周长为()A. B. C. D.6.下列四个三角形,与左图中的三角形相似的是().A. B. C. D.7.计算×的结果是()A. B.8 C.4 D.±48.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b9.如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为1﹣6;④当OD⊥AD时,BP=1.其中结论正确的有()A.1个 B.1个 C.3个 D.4个10.下列式子是分式的是()A. B. C.x2y D.11.若是一个完全平方式,则k的值是()A.8 B.-2 C.-8或-2 D.8或-212.如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=50°,则∠2的度数为()A.30° B.40° C.50° D.60°二、填空题(每题4分,共24分)13.若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是_____.14.用科学记数法表示______.15.如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为_____.16.不等式的解集为________.17.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠ADM的度数是_____.18.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是,众数是.三、解答题(共78分)19.(8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组50≤x<606第2组60≤x<708第3组70≤x<8014第4组80≤x<90a第5组90≤x<10010请结合图表完成下列各题(1)①求表中a的值;②频数分布直方图补充完整;(2)小亮想根据此直方图绘制一个扇形统计图,请你帮他算出成绩为90≤x<100这一组所对应的扇形的圆心角的度数;(3)若测试成绩不低于80分为优秀,则本次测试的优秀率(百分比)是多少?20.(8分)在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.(1)如图1,当点与点重合时,的形状是_____________________;(1)当点在点M的左侧时,如图1.①依题意补全图1;②判断的形状,并加以证明.21.(8分)如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠1.求证:四边形ABCD是矩形.22.(10分)如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿边BC向点C运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动设点F的运动时间为t秒.(1)如图1,连接DE,AF.若DE⊥AF,求t的值;(2)如图2,连结EF,DF.当t为何值时,△EBF∽△DCF?23.(10分)如图,平面直角坐标系中,直线AB:y=-+b交y轴于点A(0,1),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上的一动点,且在点D的上方,设P(1,n).(1)求直线ABd解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当=2时,①求出点P的坐标;②在①的条件下,以PB为边在第一象限作等腰直角△BPC,直接写出点C的坐标.24.(10分)如图,直线的解析式为,且与轴交于点D,直线经过点、,直线、交于点C.(1)求直线的解析表达式;(2)求的面积;(3)在直线上存在异于点C的另一点P,使得与的面积相等,请求出点P的坐标.25.(12分)如图,在正方形ABCD中,对角线AC,BD相较于点O,∠DBC的角平分线BF交CD于点E,交AC于点F(1)求证:EC=FC;(2)若OF=1,求AB的值26.如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】

根据线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等,可得出AE=CE,即可得出的周长.【题目详解】解:∵为矩形的对角线的中点,∴AO=OC,又∵AC⊥EF,∴AE=CE,又∵矩形的周长为20,∴AD+CD=∴的周长为CD+CE+DE=CD+AE+DE=10故答案为A.【题目点拨】此题主要考查利用线段垂直平分线的性质,进行等量转换,即可解题.2、C【解题分析】

根据最简二次根式的概念逐一进行判断即可.【题目详解】A.,故A选项不符合题意;B.,故B选项不符合题意;C.是最简二次根式,符合题意;D.,故不符合题意,故选C.【题目点拨】本题考查了最简二次根式的识别,熟练掌握最简二次根式的概念以及二次根式的化简是解题的关键.3、C【解题分析】

分别设出小明、小莉的速度路程,然后用代数式表示时间再比较即可.【题目详解】设小明的速度是v,则小莉乘坐公共汽车的速度2v,小莉步行的速度,总路程是s.小明的时间是:小莉的时间是:所以,小莉用的时间多,答案选C.【题目点拨】本题是对用字母表示数的实际应用,能找到本题当中数量与数量之间的关系是解决本题的关键.4、B【解题分析】

根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;

B、是轴对称图形,也是中心对称图形,故此选项正确;

C、是轴对称图形,不是中心对称图形,故此选项错误;

D、不是轴对称图形,是中心对称图形,故此选项错误;

故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、B【解题分析】

根据平行四边形的性质进行计算即可.【题目详解】解:在中,BO=BD=,CO=AC=2,∴的周长为:B0+CO+BC=+2+3=7.5故答案选:B【题目点拨】本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.6、B【解题分析】

本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【题目详解】解:设单位正方形的边长为1,给出的三角形三边长分别为,,.

A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;

B、三角形三边2,4,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.

故选:B.【题目点拨】此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.7、C【解题分析】

根据二次根式乘法法则进行计算即可.【题目详解】原式===4,故选C.【题目点拨】本题考查了二次根式的乘法,正确把握二次根式乘法的运算法则是解题的关键.8、D【解题分析】由图象对称轴为直线x=-,则-=-,得a=b,A中,由图象开口向上,得a>0,则b=a>0,由抛物线与y轴交于负半轴,则c<0,则abc<0,故A错误;B中,由a=b,则a-b=0,故B错误;C中,由图可知当x=1时,y<0,即a+b+c<0,又a=b,则2b+c<0,故C错误;D中,由抛物线的对称性,可知当x=1和x=-2时,函数值相等,则当x=-2时,y<0,即4a-2b+c<0,则4a+c<2b,故D正确.故选D.点睛:二次函数y=ax2+bx+c(a≠0)中,a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定.此外还要注意x=1,-1,2及-2对应函数值的正负来判断其式子的正确与否.9、D【解题分析】

①由矩形的性质得到,根据折叠的性质得到,,,推出四边形是矩形,根据正方形的判定定理即可得到四边形为正方形;故①正确;②过作于,得到,,根据直角三角形的性质得到,根据三角形的面积公式得到的面积为,故②正确;③连接,于是得到,即当时,取最小值,根据勾股定理得到的最小值为;故③正确;④根据已知条件推出,,三点共线,根据平行线的性质得到,等量代换得到,求得,根据勾股定理得到,故④正确.【题目详解】解:①四边形是矩形,,将沿折叠得到,,,,,,,,四边形是矩形,,四边形为正方形;故①正确;②过作于,点,点,,,,,,,的面积为,故②正确;③连接,则,即当时,取最小值,,,,,即的最小值为;故③正确;④,,,,,,三点共线,,,,,,,,,故④正确;故选:.【题目点拨】本题考查了正方形的判定和性质,矩形的判定和性质,折叠的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.10、B【解题分析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:,x2y,均为整式,是分式,故选:B【题目点拨】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.11、D【解题分析】

利用完全平方公式的结构特征判断即可确定出k的值.【题目详解】∵x1+1(k-3)x+15是一个整式的平方,

∴1(k-3)=±10,

解得:k=8或-1.

故选:D.【题目点拨】考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12、C【解题分析】

作BF∥a,根据平行线的性质即可求解.【题目详解】解:作BF∥a,∴∠3=∠1=50°,∵四边形ABCD是矩形,∴∠ABC=∠BCD=90°,∴∠4=40°,∵BF∥a,a∥b,∴BF∥b,∴∠5=∠4=40°,∴∠2=180°﹣∠5﹣90°=50°,故选:C.【题目点拨】此题主要考查平行线的性质,解题的关键是根据题意作出辅助线进行求解.二、填空题(每题4分,共24分)13、(-1,3)【解题分析】

直线y=-2x+b可以变成:2x+y=b,直线y=x-a可以变成:x-y=a,∴两直线的交点即为方程组的解,故交点坐标为(-1,3).故答案为(-1,3).14、【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】0.00000021的小数点向右移动1位得到2.1,所以0.00000021用科学记数法表示为2.1×10-1,故答案为2.1×10-1.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15、1【解题分析】

利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再根据等角的余角相等证出∠ACD=∠A,从而证明DA=DC,从而得到CD=AB=1.【题目详解】由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠BCD,∵∠B+∠A=90°,∠BCD+∠ACD=90°,∴∠ACD=∠A,∴DA=DC,∴CD=AB=×4=1.故答案为1.【题目点拨】本题考查了作图﹣基本作图—作已知线段的垂直平分线,以及垂直平分线的性质和等腰三角形的判定,熟练掌握相关知识是解题的关键.16、【解题分析】

首先去分母,再系数化成1即可;【题目详解】解:去分母得:-x≥3系数化成1得:x≤-3故答案为:x≤-3【题目点拨】本题考查了解一元一次不等式,主要考查学生的计算能力.17、75°【解题分析】

连接BD,根据BD,AC为正方形的两条对角线可知AC为BD的垂直平分线,所以∠AMD=AMB,求∠AMD,∠AMB,再根据三角形内角和可得.【题目详解】如图,连接BD,

∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°-∠BCE)=15°,∵∠BCM=∠BCD=45°,∴∠BMC=180°-(∠BCM+∠EBC)=120°∴∠AMB=180°-∠BMC=60°

∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°,∴∠ADM=180〬-∠DAC-∠AMD=180〬-45〬-60〬=75〬.故答案为75〬【题目点拨】本题考核知识点:正方形性质,等边三角形.解题关键点:运用正方形性质,等边三角形性质求角的度数.18、71【解题分析】

根据中位数和众数的定义解答.【题目详解】解:数据按从小到大排列:3,5,7,1,1,所以中位数是7;数据1出现2次,次数最多,所以众数是1.故填7;1.【点击】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.三、解答题(共78分)19、(1)12;补图见解析;(2)72°;(3)44%.【解题分析】

(1)根据各组频数之和等于总数可得的值;由频数分布表即可补全直方图;(2)用成绩大于或等于90分的人数除以总人数再乘以即可得;(3)用第4、5组频数除以总数即可得.【题目详解】解:由题意和表格,可得:,即a的值是12,补充完整的频数分布直方图如下图所示,成绩为这一组所对应的扇形的圆心角的度数为;测试成绩不低于80分为优秀,本次测试的优秀率是:.【题目点拨】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)等腰直角三角形;(1)①补全图形;②的形状是等腰三角形,证明见解析.【解题分析】

(1)由在正方形ABCD中,可得∠ABC=90°,AB=BC,又由点P与点B重合,点M,N分别为BC,AP的中点,易得BN=BM,即可判定△EPN的形状是:等腰直角三角形;(1)①首先根据题意画出图形;②首先在MC上截取MF,使MF=PM,连接AF,易得MN是△APF的中位线,证得∠1=∠1,易证得△ABF≌△DCP(SAS),则可得∠1=∠3,继而证得∠1=∠1,则可判定△EPM的形状是:等腰三角形.【题目详解】(1)∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵点M,N分别为BC,AP的中点,∴当点P与点B重合时,BN=BM,∴当点P与点B重合时,△EPM的形状是:等腰直角三角形;故答案为:等腰直角三角形;(1)补全图形,如图1所示.的形状是等腰三角形.证明:在MC上截取MF,使MF=PM,连结AF,如图1所示.∵N是AP的中点,PM=MF,∴MN是△APF的中位线.∴MN∥AF.∴.=∵M是BC的中点,PM=MF,∴BM+MF=CM+PM.即BF=PC.∵四边形ABCD是正方形,∴,AB=DC.∴△ABF≌△DCP.∴.∴.∴EP=EM.∴△EPM是等腰三角形.【题目点拨】此题属于四边形的综合题,考查了正方形的性质、等腰直角三角形的判定、三角形中位线的性质以及全等三角形的判定与性质,注意准确作出辅助线是解此题的关键.21、参见解析.【解题分析】试题分析:此题利用对角线相等的平行四边形是矩形的判定方法来判定四边形ABCD是矩形.试题解析:在□ABCD中,应用平行四边形性质得到AO=CO,BO=DO,又∵∠2=∠2,∴BO=CO,∴AO=BO=CO=DO,∴AC=BD,∴□ABCD为矩形.考点:2.矩形的判定;2.平行四边形性质.22、(1)t=1;(2)当时,△EBF∽△DCF;【解题分析】

(1)利用正方形的性质及条件,得出△ABF≌△DAE,由AE=BF列式计算.(2)利用△EBF∽△DCF,得出,列出方程求解.【题目详解】解:(1)∵DE⊥AF,∴∠AOE=90°,∴∠BAF+∠AEO=90°,∵∠ADE+∠AEO=90°,∴∠BAF=∠ADE,又∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠DAE=90°,在△ABF和△DAE中,,∴△ABF≌△DAE(ASA)∴AE=BF,∴1+t=2t,解得t=1;(2)如图2,∵四边形ABCD是正方形,∴AB=BC=CD=4,∵BF=2t,AE=1+t,∴FC=4-2t,BE=4-1-t=3-t,当△EBF∽△DCF时,,∴=,解得,t1=,t2=(舍去),故t=.所以当t=时,△EBF∽△DCF.【题目点拨】本题主要考查了四边形的综合题,利用了全等三角形的判定和性质,相似三角形的判定和性质,难度一般.23、(1)y=-x+1,点B(3,0);(2)n-1;(3)①P(1,2);②(3,4)或(5,2)或(3,2).【解题分析】

(1)将点A的坐标代入直线AB的解析式可求得b值,可得AB的解析式,继而令y=0,求得相应的x值即可得点为B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,再求得△BPD和△PAD的面积,二者的和即为△ABP的面积;(3)①当S△ABP=2时,代入①中所得的代数式,求得n值,即可求得点P的坐标;②分P是直角顶点且BP=PC、B是直角顶点且BP=BC、C是直角顶点且CP=CB三种情况求点C的坐标即可.【题目详解】(1)∵y=-x+b经过A(0,1),∴b=1,∴直线AB的解析式是y=-x+1,当y=0时,0=-x+1,解得x=3,∴点B(3,0);(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-x+1=,P在点D的上方,∴PD=n-,S△APD=PD•AM=×1×(n-)=n-,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)①当S△ABP=2时,n-1=2,解得n=2,∴点P(1,2);②∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°,在△CNP与△BEP中,,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4);第2种情况,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°,在△CBP与△PBE中,,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2);第3种情况,如图3,∠PCB=90°,CP=CB,∴∠CPB=∠CBP=45°,∵∠EPB=∠EBP=45°,∴∠PCB=∠CBE=∠EPC=90°,∴四边形EBCP为矩形,∵CP=CB,∴四边形EBCP为正方形,∴PC=CB=PE=EB=2,∴C(3,2);∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).【题目点拨】本题考查了待定系数法求函数的解析式、全等三角形的判定和性质、等腰直角三角形的性质的综合应用,正确求得n的值,判断∠OBP=45°是解决问题的关键.24、(1);(2);(3)P(6,3).【解题分析】试题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论