葫芦岛龙港区六校联考2024届数学八下期末教学质量检测试题含解析_第1页
葫芦岛龙港区六校联考2024届数学八下期末教学质量检测试题含解析_第2页
葫芦岛龙港区六校联考2024届数学八下期末教学质量检测试题含解析_第3页
葫芦岛龙港区六校联考2024届数学八下期末教学质量检测试题含解析_第4页
葫芦岛龙港区六校联考2024届数学八下期末教学质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

葫芦岛龙港区六校联考2024届数学八下期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6 B.极差是2 C.平均数是6 D.方差是42.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:甲=乙=80,s=240,s=180,则成绩较为稳定的班级是().A.甲班 B.两班成绩一样稳定 C.乙班 D.无法确定3.如图,在正方形中,点,分别在,上,,与相交于点.下列结论:①垂直平分;②;③当时,为等边三角形;④当时,.其中正确的结论是()A.①③ B.②④ C.①③④ D.②③④4.若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60 B.30 C.20 D.325.等式成立的条件是()A. B. C.x>2 D.6.甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是28,18.6,1.1.导游小李最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团 B.乙团 C.丙团 D.三个团都一样7.在四边形中,,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是()A. B. C. D.8.若方程有增根,则m的值为()A.2 B.4 C.3 D.-39.如图,的顶点坐标分别为,,,如果将先向左平移个单位,再向上平移个单位得到,那么点的对应点的坐标是()A. B. C. D.10.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是()A. B. C. D.11.关于x的方程mx2+(2m+1)x+m=0,有实数根,则m的取值范围是()A.m>且m≠0 B.m≥ C.m≥且m≠0 D.以上答案都不对12.下列二次根式中,可与合并的二次根式是A. B. C. D.二、填空题(每题4分,共24分)13.已知一组数据4,4,5,x,6,6的众数是6,则这组数据的中位数是_____.14.已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).15.若是关于的方程的一个根,则方程的另一个根是_________.16.关于一元二次方程有两个相等的实数根,则的值是__________.17.已知在等腰梯形中,,,对角线,垂足为,若,,梯形的高为______.18.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣1,1),C(﹣1,3).(1)将△ABC先向下平移6个单位长度,再向右平移5个单位长度,得到△A1B1C1,画出△A1B1C1,并写出点A的对应点A1的坐标;(1)将△ABC绕着点O按顺时针方向旋转90°得到△A1B1C1,画出△A1B1C1.20.(8分)在▱ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F.(1)如图①,证明:BE=BF.(2)如图②,若∠ADC=90°,O为AC的中点,G为EF的中点,试探究OG与AC的位置关系,并说明理由.(3)如图③,若∠ADC=60°,过点E作DC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EK=BF,连接CK,H为CK的中点,试探究线段OH与HA之间的数量关系,并对结论给予证明.21.(8分)如图,平行四边形ABCD中,AE、DE分别平分∠BAD、∠ADC,E点在BC上.(1)求证:BC=2AB;(2)若AB=3cm,∠B=60°,一动点F以1cm/s的速度从A点出发,沿线段AD运动,CF交DE于G,当CF∥AE时:①求点F的运动时间t的值;②求线段AG的长度.22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象(如图),图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?23.(10分)已知一次函数的图象经过,两点.(1)求这个一次函数的解析式;(2)试判断点是否在这个一次函数的图象上;(3)求此函数图象与轴,轴围成的三角形的面积.24.(10分)如图1,在正方形ABCD中,E是BC边上一点,F是BA延长线上一点,AF=CE,连接BD,EF,FG平分∠BFE交BD于点G.(1)求证:△ADF≌△CDE;(2)求证:DF=DG;(3)如图2,若GH⊥EF于点H,且EH=FH,设正方形ABCD的边长为x,GH=y,求y与x之间的关系式.25.(12分)一次函数的图象经过点.(1)求出这个一次函数的解析式;(2)求把该函数图象向下平移1个单位长度后得到的函数图象的解析式.26.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.(1)如图2,取AB的中点H,连接HE,求证:AE=EF.(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.【题目详解】解:这组数据6出现了6次,最多,所以这组数据的众数为6;这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;这组数据的平均数=(5×2+6×6+7×2)=6;这组数据的方差S2=[2•(5﹣6)2+6•(6﹣6)2+2•(7﹣6)2]=0.4;所以四个选项中,A、B、C正确,D错误.故选:D.【题目点拨】本题考查了方差的定义和意义:数据x1,x2,…xn,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.也考查了平均数和众数以及极差的概念.2、C【解题分析】

根据方差的意义判断.方差越小,波动越小,越稳定.【题目详解】∵>,∴成绩较为稳定的班级是乙班.故答案选C.【题目点拨】本题考查的知识点是方差,解题的关键是熟练的掌握方差.3、A【解题分析】

①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,

②设BC=x,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;

③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,

④当∠EAF=60°时,可证明△AEF是等边三角形,从而可得∠AEF=60°,而△CEF是等腰直角三角形,得∠CEF=45°,从而可求出∠AEB=75°,进而可得结论.【题目详解】解:①四边形ABCD是正方形,

∴AB═AD,∠B=∠D=90°.

在Rt△ABE和Rt△ADF中,,

∴Rt△ABE≌Rt△ADF(HL),

∴BE=DF

∵BC=CD,

∴BC-BE=CD-DF,即CE=CF,

∵AE=AF,

∴AC垂直平分EF.(故①正确).

②设BC=a,CE=y,

∴BE+DF=2(a-y)

EF=y,

∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).

③当∠DAF=15°时,

∵Rt△ABE≌Rt△ADF,

∴∠DAF=∠BAE=15°,

∴∠EAF=90°-2×15°=60°,

又∵AE=AF

∴△AEF为等边三角形.(故③正确).

④当∠EAF=60°时,由①知AE=AF,∴△AEF是等边三角形,∴∠AEF=60°,又△CEF为等腰直角三角形,∴∠CEF=45°∴∠AEB=180°-∠AEF-∠CEF=75°,∴∠AEB≠∠AEF,故④错误.

综上所述,正确的有①③,

故选:A.【题目点拨】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.4、B【解题分析】

解:根据直角三角形的勾股定理可得:另一条直角边=,则S=12×5÷2=30故选:B.5、C【解题分析】

直接利用二次根式的性质得出关于x的不等式进而求出答案.【题目详解】解:∵等式=成立,∴,解得:x>1.故选:C.【题目点拨】此题主要考查了二次根式的性质,正确解不等式组是解题关键.6、C【解题分析】

根据方差的意义即可得.【题目详解】方差越小,表示游客年龄波动越小、越相近则他应该选择丙团故选:C.【题目点拨】本题考查了方差的意义,掌握理解方差的意义是解题关键.7、A【解题分析】

由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【题目详解】∵四边形ABCD中,∠A=∠B=∠C=90°,∴四边形ABCD是矩形,当一组邻边相等时,矩形ABCD为正方形,这个条件可以是:.故选A.【题目点拨】此题考查正方形的判定,解题关键在于掌握判定定理.8、D【解题分析】

增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x−1)=0,得到x=1,然后代入化为整式方程的方程算出m的值.【题目详解】方程两边都乘(x−1),得x=2(x−1)-m,∵原方程有增根,∴最简公分母(x−1)=0,解得x=1,当x=1时,1=2(1−1)-mm=-1.故选:D.【题目点拨】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9、C【解题分析】

把B点的横坐标减2,纵坐标加1即为点B´的坐标.【题目详解】解:由题中平移规律可知:点B´的横坐标为-1−2=−3;纵坐标为1+1=2,

∴点B´的坐标是(−3,2).

故选:C.【题目点拨】本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.10、A【解题分析】试题分析:根据平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例,依次分析各选项即得结果.A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.考点:本题考查了平行投影特点点评:解答本题的关键是掌握平行投影的特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.11、B【解题分析】【分析】分两种情况:m=0时是一元一次方程,一定有实根;m≠0时,方程有两个实数根,则根的判别式△≥0,建立关于m的不等式,求得m的取值范围.【题目详解】当m≠0时,方程为一元二次方程,∵a=m,b=2m+1,c=m且方程有实数根,∴△=b2-4ac=(2m+1)2-4m2≥0,∴m≥且m≠0;当m=0时,方程为一元一次方程x=0,一定有实数根,所以m的取值范围是m≥,故选B.【题目点拨】本题考查了方程有实数根的情况,考查了一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.进行分类讨论是解题的关键.12、A【解题分析】

根据最简二次根式的定义,对每一个选项进行化简即可.【题目详解】A、,与是同类二次根式,可以合并,该选项正确;B、,与不是同类二次根式,不可以合并,该选项错误;C、与不是同类二次根式,不可以合并,该选项错误;D、,与不是同类二次根式,不可以合并,该选项错误;故选择:A.【题目点拨】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.二、填空题(每题4分,共24分)13、1.1【解题分析】

这组数据4,4,1,,6,6的众数是6,说明6出现的次数最多,因此,从小到大排列后,处在第3、4位两个数据的平均数为,因此中位数是1.1.【题目详解】解:这组数据4,4,1,,6,6的众数是6,,,故答案为:1.1.【题目点拨】考查众数、中位数的意义及求法,明确众数、中位数的意义,掌握众数、中位数的求法是解决问题的前提.14、1【解题分析】

先从图象中获取信息得知A,B两地之间的距离及乙的行驶时间求出乙车的速度,然后再根据两车的相遇时间求出甲的速度,然后求出甲车行完全程的时间,就可以算出此时乙车的行驶时间,用总时间减去甲行完全程时的时间求出乙车剩下的时间,再乘以乙车的速度即可求出路程.【题目详解】由图象可知,A、B两地相距990千米,而乙来回用时22小时,因此乙车的速度为:990÷(22÷2)=90千米/小时,甲乙两车在C地相遇后,甲休息0.5小时,乙继续走,所以乙车出发7小时后两车相遇,因此甲车速度为:(990﹣90×7)÷(7﹣1)=60千米/小时,甲车行完全程的时间为:990÷60=16.5小时,此时乙车已经行驶16.5+0.5+1=18小时,因此乙车距B地还剩22﹣18=4小时的路程,所以当甲车到达B地时,乙车距离B地的距离为90×4=1千米,故答案为:1.【题目点拨】本题主要考查一次函数的应用,能够从图象中获取有用信息并掌握行程问题的解法是解题的关键.15、【解题分析】

设另一个根为y,利用两根之和,即可解决问题.【题目详解】解:设方程的另一个根为y,则y+=4,解得y=,即方程的另一个根为,故答案为:.【题目点拨】题考查根与系数的关系、一元二次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、16【解题分析】

根据根判别式得出答案.【题目详解】因为关于一元二次方程有两个相等的实数根,所以解得k=16故答案为:16【题目点拨】考核知识点:根判别式.理解根判别式的意义是关键.17、【解题分析】

过作交的延长线于,构造.首先求出是等腰直角三角形,从而推出与的关系.【题目详解】解:如图:过作交的延长线于,过作于.,,四边形是平行四边形,,,等腰梯形中,,,,,,是等腰直角三角形,,又,,即梯形的高为.故答案为:.【题目点拨】本题考查了等腰梯形性质,作对角线的平行线将上下底和对角线移到同一个三角形中是解题的关键,也是梯形辅助线常见作法.18、23【解题分析】当数据个数是奇数个时,中位数是最中间的数;当数据个数是偶数个时,中位数是最中间的两个数的平均数,由折线图可知,20本的有4人;21本的有8人;23本的有20人,24本的有8人,所以中位数是23。故答案是:23三、解答题(共78分)19、(1)A1(1,﹣1);(1)详见解析【解题分析】

(1)根据图形平移的性质画出△A1B1C1,并写出点A的对应点A1的坐标即可;(1)根据图形旋转的性质画出旋转后的△A1B1C1即可.【题目详解】(1)如图,△A1B1C1即为所求,A1(1,﹣1);(1)如图,△A1B1C1即为所求.【题目点拨】本题考查的是作图-旋转变换,熟知图形旋转不变性是解答此题的关键.20、(1)详见解析;(2)GO⊥AC;(3)AH=OH【解题分析】

(1)根据平行线的性质得出∠E=∠ADF,∠EFB=∠EDC,再利用ED平分∠ADC,即可解答(2)连接BG,AG,根据题意得出四边形ABCD是矩形,再利用矩形的性质,证明△ABG≌△CEG,即可解答(3)连接AK,BK,FK,先得出四边形BFKE是菱形,,再利用菱形的性质证明△KBE,△KBF都是等边三角形,再利用等边三角形的性质得出△ABK≌△CEK,最后利用三角函数即可解答【题目详解】(1)证明:如图①中,因为四边形ABCD为平行四边形,所以,AD∥EC,AB∥CD,所以,∠E=∠ADF,∠EFB=∠EDC,因为ED平分∠ADC,所以,∠ADF=∠EDC,所以,∠E=∠EFB,所以,BE=BF(2)解:如图⊙中,结论:GO⊥AC连接BG,AG∵四边形ABCD是平行四边形,∠ADC=90°,四边形ABCD是矩形,∠ABC=∠ABE=90°,由(1)可知:BE=BF,∵∠EBF=90°,EG=FG,∴∠E=45°,∠GBF=∠GBE=45°,BG=GE=GF,∵∠DCE=90°∴∠E=∠EDC=45°,∴DC=CE=BA,∵∠ABG=∠E=45°,AB=EC,BG=EG,∴△ABG≌△CEG(SAS),∵GA=GC∴AO=OC.∴GO⊥AC(3)解:如图⊙中,连接AK,BK,FK∵BF=EK,BF∥EK,∴四边形BFKE是平行四边形,∵BF=BE,∴四边形BFKE是菱形,∵边形ABCD是平行四边形,∴∠ADC=∠ABC=60°,∠DCB=∠DAB=120°∴∠EBF=120°,∴∠KBE=∠KBF=60°BF=BE=FK=EK,∴△KBE,△KBF都是等边三角形,∴∠ABK=∠CEK=60°,∠FEB=∠FEK=30∴∠CDE=∠CED=30°∴CD=CE=BA,∵BK=EK,∴△ABK≌△CEK(SAS)∴AK=CK,∠AKB=∠CKB∴∠AKC=∠BKE=60°∴△ACK是等边三角形∵OA=OC,CH=HK∴AK=2OH,AH⊥CK,∴AH=AK·cos30°=AK∴AH=OH.【题目点拨】此题考查平行四边形的性质,矩形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,解题关键在于作辅助线21、(1)见解析;(2)①t=3(秒);②AG=.【解题分析】

(1)先判断出∠DAE=∠AEB,再判断出∠DAE=∠BAE,进而得出∠BAE=∠AEB,即可判断出AB=BE同理:判断出CE=AB,即可得出结论(2)①先判断出四边形AECF是平行四边形,进而求AF=3,即可得出结论②先判断出△ABE是等边三角形,进而求出∠AEB=60°,AE=3cm,再判断出∠DCF=∠ECF,即可判断出∠CGE=90°,最后用勾股定理即可得出结论.【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴∠DAE=∠AEB,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,同理:CE=CD,∴BE=CE=AB,∴BC=BE+CD=2AB;(2)①由(1)知,CE=CD=AB,∵AB=3cm,∴CE=3cm,∵四边形ABCD是平行四边形,∴AD∥BC∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE=3cm,∴点F的运动时间t=3÷1=3(秒);②由(1)知AB=BE,∵∠B=60°,∴△ABE是等边三角形,∴∠AEB=60°,AE=AB=3cm,∵四边形ABCD是平行四边形,∴∠B+∠BCD=180°,∵∠B=60°,∴∠BCD=120°,∵AE∥CF,∴∠ECF=∠AEB=60°,∴∠DCF=∠BCD﹣∠ECF=60°=∠ECF,由(1)知,CE=CD=AB=3cm,∴CF⊥DE,∴∠CGE=90°,在Rt△CGE中,∠CEG=90°﹣∠ECF=30°,CG=CE=,∴EG=CG=,∵∠AEB=60°,∠CEG=30°,∴∠AEG=90°,在Rt△AEG中,AE=3,根据勾股定理得,AG=.【题目点拨】此题为四边形的综合题,解题关键在于运用平行四边形的性质求解22、(1)330;660(2)答案见解析(3)日销售利润不低于640元的天数共有11天,试销售期间,日销售最大利润是720元.【解题分析】

(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+1.联立两线段所表示的函数关系式成方程组,得,解得,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+1)≥640,解得:x≤2.∴16≤x≤2.2﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.考点:一次函数的应用.23、(1);(2)不在这个一次函数的图象上;(3)函数图象与轴,轴围成的三角形的面积=4.【解题分析】

(1)利用待定系数法求一次函数解析式;(2)利用一次函数图象上点的坐标特征进行判断;(3)先利用一次函数解析式分别求出一次函数与坐标轴的两交点坐标,然后利用三角形面积公式求解.【题目详解】(1)设一次函数解析式为,把,代入得,解得,所以一次函数解析式为;(2)当时,,所以点不在这个一次函数的图象上;(3)当时,,则一次函数与轴的交点坐标为,当时,,解得,则一次函数与轴的交点坐标为,所以此函数图象与轴,轴围成的三角形的面积.【题目点拨】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.24、(1)详见解析;(2)详见解析;(3),理由详见解析.【解题分析】

(1)根据SAS即可证明;

(2)欲证明DF=DG,只要证明∠DFG=∠DGF;

(3)如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.首先说明G是△BEF的内心,由题意Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,推出FH=FM,EH=EN,GN=GM=BM=BN=y,由EH:FH=1:3,设EH=a,则FH=3a,FB=3a+y,BE=a+y,EC=AF,推出FB+BE=2x,可得3a+y+a+y=2x,即y=x-2a,推出CN=2a,推出CE=a,想办法用a表示x、y即可解决问题;【题目详解】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠C=∠BAD=∠DAF=90°,CD=DA,在△ADF和△CDE中,∴△ADF≌△CDE.(2)证明:如图1中,∵四边形ABCD是正方形,∴∠FBG=45°,∵△ADF≌△CDE,∴DF=DE,∠ADF=∠CDE,∴∠EDF=∠ADC=90°,∠DFE=45°,∵∠DFG=45°+∠EFG,∠DGF=45°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论