2023-2024学年河南省信阳市罗山县八年级(上)期末数学试卷(含解析)_第1页
2023-2024学年河南省信阳市罗山县八年级(上)期末数学试卷(含解析)_第2页
2023-2024学年河南省信阳市罗山县八年级(上)期末数学试卷(含解析)_第3页
2023-2024学年河南省信阳市罗山县八年级(上)期末数学试卷(含解析)_第4页
2023-2024学年河南省信阳市罗山县八年级(上)期末数学试卷(含解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第=page11页,共=sectionpages11页2023-2024学年河南省信阳市罗山县八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。在每小题给出的选项中,只有一项是符合题目要求的。1.中国汉字文化源远流长,篆书是汉字古代书体之一.下列篆体字“大”“美”“中”“原”中,不是轴对称图形的是(

)A. B. C. D.2.下列运算正确的是

(

)A.a2·a3=a6 B.3.下列因式分解错误的是(

)A.1−16a2=(1+44.如图,已知∠AOB,以点O为圆心,任意长度为半径画弧①,分别交OA,OB于点E,F,再以点E为圆心,EF的长为半径画弧,交弧①于点D,画射线OD.若

A.28° B.32° C.56°5.如图,Rt△ABC沿BC所在直线向右平移得到

A.EC=CF B.∠DEF=6.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=A.35°

B.36°

C.37°7.下列图形中,△A′B′C′与△A. B.

C. D.8.如图,在△ABC中,AD,AE分别是边CB上的中线和高,AE=A.4cm B.6cm C.9.要使分式−x+2x(xA.x≠3 B.x≠0或x≠3

C.x≠0且10.定义运算“※”:a※b=aa−b,A.52 B.152 C.10 D.5二、填空题:本题共5小题,每小题3分,共15分。11.点P(3,5)关于x12.因式分解:ma2−6m13.如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD

14.已知分式x+2bx−a,当x=2时,分式的值为0,当15.如图,BD是△ABC的外角∠ABP的角平分线,DA=DC,DE⊥三、解答题:本题共8小题,共75分。解答应写出文字说明,证明过程或演算步骤。16.(本小题10分)

(1)计算:327+|3−17.(本小题10分)

(1)计算:(−2a2b)18.(本小题9分)如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠B

19.(本小题9分)

如果一个正整数能表示为两个连续的偶数的平方差,那么称这个正整数为“神秘数”.如果4=22−02,12=42−22,20=62−42,因此4,12,20都是“神秘数”.

(1)28和2020这两个数是“神秘数”吗?为什么?

20.(本小题9分)

小丽与爸妈在公园里荡秋千,如图,小丽坐在秋千的起始位置A处,OA与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m高的B处接住她后用力一推,爸爸在C处接住她.若妈妈与爸爸到OA的水平距离BD、CE分别为1.8m和2.4m,∠BOC=90°21.(本小题9分)

现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.

研究(1):如果折成图①的形状,使点A落在CE上,则∠1与∠A的数量关系是______.

研究(2):如果折成图②的形状,猜想∠1+∠2与∠A22.(本小题9分)

金师傅近期准备换车,看中了价格相同的两款国产车.燃油车

油箱容积:40升

油价:9元/升

续航里程:a千米

每千米行驶费用:40×新能源车

电池电量:60千瓦时

电价:0.6元/千瓦时

续航里程:a千米

每千米行驶费用:_____元(1)用含a的代数式表示新能源车的每千米行驶费用.

(2)若燃油车的每千米行驶费用比新能源车多0.54元.

①分别求出这两款车的每千米行驶费用.

②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用23.(本小题10分)

如图①,点C在线段AB上(点C不与A,B重合),分别以AC,BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE,BD交于点P.

(1)观察猜想:

①AE与BD的数量关系为______.

②∠APD的度数为______;

(2)数学思考:

如图②,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展应用:

如图③,点E答案和解析1.【答案】D

【解析】解:A、是轴对称图形,不合题意;

B、是轴对称图形,不符合题意;

C、是轴对称图形,不合题意;

D、不是轴对称图形,符合题意;

故选:D.

根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.

此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.2.【答案】B

【解析】【分析】

本题考查合并同类项、同底数幂的乘法、幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键.

根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方再把所得的幂相乘;幂的乘方,底数不变指数相乘;以及合并同类项法则对各选项分析判断即可得解.

【解答】

解:A.a2·a3=a2+3=a5,故本选项错误;

B.(a3.【答案】B

【解析】解:A、1−16a2=(1+4a)(1−4a)正确,故本选项错误;

B、x3−4.【答案】C

【解析】解;根据作图过程可知:OF=OD,EF=DE,

在△EOF和△DOE中,

OF=ODEF=EDOE=OE,

∴△EOF≌△D5.【答案】A

【解析】解:由平移的性质得:BE=CF,EC和CF不一定相等,

故A符合题意;

由平移的性质得到△ABC≌△DEF,

∴∠DEF=∠A6.【答案】D

【解析】解:如图,设C′D与AC交于点O,

∵∠C=35°,

∴∠C′=∠C=35°,

∵∠1=∠DOC+∠C7.【答案】B

【解析】解:根据轴对称的性质,结合四个选项,只有B选项中对应点的连线被对称轴MN垂直平分,所以B是符合要求的.

故选:B.

认真观察各选项给出的图形,根据轴对称的性质,对称轴垂直平分线对应点的连线进行判断.

8.【答案】C

【解析】解:∵AD为CB边上的中线,

∴S△ABC=2S△ABD=24cm2,

即12BC⋅AE=24,9.【答案】C

【解析】解:由题意得:x(x−3)≠0,

则x≠0且x10.【答案】D

【解析】【分析】

根据定义运算的意义,当5>x、5<x时分别列式求出x.

本题考查了解分式方程,理解新定义的运算方法是解决本题的关键.

【解答】

解:当5>x时,

因为5※x=2,

所以55−x=2,

解得x=52.

经检验,x=52符合题意,是分式方程的解.

当511.【答案】(3【解析】解:P(3,5)关于x轴对称的点的坐标为(3,−5),

故答案为:(3,−12.【答案】m(【解析】解:原式=m(a2−6a+9)=13.【答案】10

【解析】解:延长EF,交CD于点G,如图:

∵∠ACB=180°−50°−60°=70°,

∴∠ECD=∠ACB=70°.

∵∠DGF=∠DCE+∠E,

∴∠14.【答案】13【解析】解:根据题意得:2+2b=03−a=0,

解得:b=−1a=3,

所以ab=315.【答案】1

【解析】解:如图,过点D作DF⊥AB于F,

∵BD是∠ABP的角平分线,

∴DE=DF,

在Rt△BDE和Rt△BDF中,

BD=BDDE=DF,

∴Rt△BDE≌Rt△BDF(HL),

∴BE=BF,

在Rt△ADF和Rt△CDE中,

DA16.【答案】解:(1)327+|3−2|−94

=3+2−【解析】(1)先计算立方根、绝对值和二次根式,再计算加减;

(217.【答案】解:(1)原式=4a4b2⋅(3b2−5a2b)÷(−a3b3)

=(12a4【解析】(1)利用积的乘方法则,单项式乘多项式法则及多项式除以单项式法则计算即可;

(218.【答案】解:∵AD⊥BC,

∴∠ADC=90°,

∵∠C=70°,

∴∠DAC=180°−90°−70【解析】因为AD是高,所以∠ADC=90°,又因为∠C=70°,所以∠DAC度数可求;因为∠BAC19.【答案】解:(1)∵28=82−62,2020=5062−5042,

∴28是“神秘数”;2020是“神秘数”;

(2)两个连续偶数构成的“神秘数”是4的倍数.

理由如下:

(2k+2)2−(2k)2=(2k+2+2k【解析】(1)根据“神秘数”的定义,只需看能否把28和2020这两个数写成两个连续偶数的平方差即可判断;

(2)运用平方差公式进行计算,进而判断即可;

20.【答案】解:(1)△OBD与△COE全等.

理由如下:

由题意可知∠CEO=∠BDO=90°,OB=OC,

∵∠BOC=90°,

∴∠COE+∠BOD=∠BOD+∠OBD=90°.

∴∠COE=∠OBD【解析】(1)由直角三角形的性质得出∠COE=∠OBD,根据AAS可证明△COE≌△O21.【答案】(1)∠1=2∠A;

(2)∠1+∠2=2∠A;

(3)如图3,【解析】解:(1)如图1,∠1=2∠A,理由是:

由折叠得:∠A=∠A′,

∵∠1=∠A+∠A′,

∴∠1=2∠A;

故答案为:∠1=2∠A;

(2)如图2,猜想:∠1+∠2=2∠A,理由是:

由折叠得:∠ADE=∠A22.【答案】解:(1)由表格可得,

新能源车的每千米行驶费用为:60×0.6a=36a(元),

即新能源车的每千米行驶费用为36a元;

(2)①∵燃油车的每千米行驶费用比新能源车多0.54元,

∴40×9a−36a=0.54,

解得a=600,

经检验,a=600是原分式方程的解,

∴【解析】(1)根据表中的信息,可以计算出新能源车的每千米行驶费用;

(2)①根据燃油车的每千米行驶费用比新能源车多0.54元和表中的信息,可以列出相应的分式方程,然后求解即可,注意分式方程要检验;23.【答案】AE=BD

【解析】解:(1)①设AE交CD于点O.

∵△ADC,△ECB都是等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论