




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《等腰三角形》姓名:国秀燕
学科:初中数学
报送单位:大庆市兰德学校教材:北师大版八年级下
大庆市“华渔杯”课件大赛(PPT类)第一章三角形的证明能够用综合法证明有关三角形和等腰三角形的一些结论。1进一步熟悉证明的基本步骤和书写格式。2学习目标等腰三角形“三线合一”推论证明“等边对等角”定理证明盘点收获走进中考达标检测“AAS”定理证明1.两直线被第三条直线所截,如果________相等,那么这两条直线平行;2.两条平行线被第三条直线所截,________相等;3.____________对应相等的两个三角形全等;(SAS)4.____________对应相等的两个三角形全等;(ASA)5._____对应相等的两个三角形全等;(SSS)你能证明下面的推论吗?推论两角及其中一角的对边对应相等的两个三角形全等.(AAS)基本事实:同位角同位角两边及其夹角两角及其夹边三边
定理两角及其中一角的对边对应相等的两个三角形全等.(AAS)已知:如图,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E)∵∠A=∠D,∠B=∠E(已知)∴∠C=∠F(等量代换)∵BC=EF(已知)∴△ABC≌△DEF(ASA)FEDCBA返回议一议,做一做(1)还记得我们探索过的等腰三角形的性质吗?尽可能回忆出来.(2)你能利用已有的公理和定理证明这些结论吗?如图,先自己折纸观察探索并写出等腰三角形的性质,然后再小组交流,互相弥补不足.→→DCBADCBAD(C)BA定理:等腰三角形的两个底角相等.(等边对等角)已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.证明:取BC的中点D,连接AD.在△ABD和△ACD中∵AB=AC,BD=CD,AD=AD∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形的对应角相等)CBAD证法一:等腰三角形的性质一题多解等腰三角形的性质已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.证明:作△ABC顶角∠A的角平分线AD.在△ABD和△ACD中∵AB=AC,∠BAD=∠CAD,AD=AD∴△ABD≌△ACD(SAS)∴∠B=∠C(全等三角形的对应角相等)CBAD证法二:定理:等腰三角形的两个底角相等.(等边对等角)一题多解等腰三角形的性质已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.证明:在△ABC和△ACB中∵AB=AC,∠A=∠A,AC=AB,∴△ABC≌△ACB(SAS)∴∠B=∠C(全等三角形的对应角相等)CBA证法三:点拨:此题还有多种证法,不论怎样证,依据都是全等的基本性质。定理:等腰三角形的两个底角相等.(等边对等角)一题多解返回想一想CBAD
在上面的图形中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?
推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合.(三线合一)返回1.AAS定理:盘点收获2.“等边对等角”定理:3.“等腰三角形三线合一”推论:返回1.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°
B.36°
C.30°
D.25°走进中考2.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中班安全教育小课堂
- 建筑行业宣传片
- 广告主活动规范
- 护士层级竞聘课件
- 光通信行业报告
- 兽药买卖合同标准文本
- 心理健康教育中心
- 公安监控维护合同标准文本
- 买卖石灰合同范例
- 共同投资期限合同标准文本
- (一模)2025年广东省高三高考模拟测试 (一) 英语试卷(含官方答案及详解)
- 退役军人无人机培训宣传
- 退役军人保密教育
- DB44∕T 370-2006 东风螺养殖技术规范繁殖与苗种培育技术
- 7.1我国法治建设的历程 课件高中政治统编版必修三政治与法治
- 2025年仲裁法考试试题及答案
- 2025年电梯修理作业证理论考试练习题(100题)含答案
- 交通运输行业股权分配方案
- 中试平台管理制度
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- (正式版)SHT 3078-2024 立式圆筒形料仓工程设计规范
评论
0/150
提交评论