




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题38二次函数中的宽高模型【模型展示】特点面积处理之“宽高模型”如图,试探究△ABC面积.如图1,过点C(定点)作CD⊥x轴交AB于点D,则S△ABC=S△ACD+S△BCD图1图2如图2,过点B作BF⊥CD于点F,过点A作AE⊥CD于点E,过点A作AG⊥x轴于点G,则S△ABC=S△ACD+S△BCD=CD·AE+CD·BF=CD·(AE+BF)=CD·OG说明:其中OG表示A、B两点之间在水平方向上的距离,可称为△ABC的水平宽,CD可称为△ABC的铅垂高,即S△ABC=×水平宽×铅垂高,可称为“宽高公式”结论S△ABC=×水平宽×铅垂高【模型证明】解决方案1、如图3,过点 A作AD⊥x轴交BC的延长线于点D,则S△ABC=S△ABD-S△ACD
图3图4如图4,过点B作BH⊥AD交于点H,则S△ABC=S△ABD-S△ACD=AD·BH-AD·CG=AD·(BH-CG)=AD·OC说明:OC是△ABC的水平宽,AD是△ABC的铅垂高.2、如图5,过点B作BD⊥y轴交AC于点D,则S△ABC=S△ABD+S△BCD图5图6如图6,过点C作CH⊥BD于点H,过点A作AG⊥x轴于点G,交BD的延长线于点E,则S△ABC=S△ABD+S△BCD=BD·AE+BD·CH=BD·(AE+CH)=BD·AG说明:BD是△ABC的水平宽,AG是△ABC的铅垂高.3、如图7,过点 A作AE⊥y轴于点E,延长AE交BC反向延长线于点D,则S△ABC=S△ACD-S△ABD
图7图8如图8,过点C作CF⊥AD交于点F,则S△ABC=S△ACD-S△ABD=AD·CF-AD·BE=AD·(CF-BE)=AD·OB说明:AD是△ABC的水平宽,OB是△ABC的铅垂高.[反思总结]无论点A、B、C三点的相对位置如何,“宽高模型”对图形面积求解总是适用,其证明方法、证明过程、最终结论都基本一致,利用大面积-小面积或割补法求解,体现出数学中“变中不变”的和谐统一之美.【题型演练】1、如图,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点.
(1)求抛物线的函数表达式;
(2)点P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标;
在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:
“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.
例如:三点坐标分别为A(1,2),B(-3,1),C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.
(1)已知点A(1,2),B(-3,1),P(0,t).
①若A,B,P三点的“矩面积”为12,求点P的坐标;
②直接写出A,B,P三点的“矩面积”的最小值.
(2
)已知点E(4,0),F(0,2),M(m,4m),N(n,),其中m>0,n>0.
①若E,F,M三点的“矩面积”为8,求m的取值范围;
②直接写出E,F,N三点的“矩面积”的最小值及对应n的取值范围.3、如图所示,在平面直角坐标系中,二次函数y=ax2+bx+6(a≠0)交x轴于A(-4,0),B(2,0),在y轴上有一点E(0,-2),连接AE.
(1)求二次函数的表达式;
(2)点D是第二象限内的抛物线上一动点.
①求△ADE面积最大值并写出此时点D的坐标;
②若tan∠AED=,求此时点D坐标;
(3)连接AC,点P是线段CA上的动点,连接OP,把线段PO绕着点P顺时针旋转90°至PQ,点Q是点O的对应点.当动点P从点C运动到点A,则动点Q所经过的路径长等于(直接写出答案)4.(2020·浙江杭州·九年级专题练习)如图,已知二次函数的图象与轴交于点、,与轴交于点,顶点坐标为.则与的面积之比是(
).A. B. C. D.5、如图,已知抛物线与轴交于A、B两点,与轴交于点C.(1)求A、B、C三点的坐标;(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.6、如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线经过A,B两点,抛物线的顶点为D.(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.7、如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
8、如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及;(3)是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.图图-2xCOyABD119、如图,抛物线与x轴交于A(1,0),B(-3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度企业导师制师带徒培养合同
- 2025年度人合作合伙合同:清洁能源项目投资合作框架
- 2025年度医疗护理劳务合同患者安全与权益保障合同
- 2025年度仓储物流转租服务合同
- 2025年度店面转让定金支付及品牌战略合作协议
- 2025年度仓储设施使用权及仓储仓储服务协议
- 2025年杭州医学院单招职业适应性测试题库完整版
- 2025年度个人短期租房合同月付与租户退租流程管理协议
- 2025年度合伙投资开中式餐厅合作协议
- 2025年度互联网企业产品经理岗位聘用合同
- 软压光机计算说明
- 森林防火安全责任书(施工队用)
- 《汽车性能评价与选购》课程设计
- 35kV绝缘导线门型直线杆
- 水库应急抢险与典型案例分析
- 49式武当太极剑动作方位
- 工程成本分析报告(新)
- 国际学术会议海报模板16-academic conference poster model
- 经典诵读比赛评分标准【精选文档】
- 高值耗材参考目录
- 步兵战斗动作
评论
0/150
提交评论