版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02全等三角形中的半角模型【模型展示】特点过正方形ABCD顶角顶点(设顶角为A),引两条射线且它们的夹角为∠A2;这两条射线与过底角顶点的相关直线交于两点E、F,则BE,EF,FC之间必存在固定关系。这种关系仅与两条相关直线及顶角A【模型证明】解决方法以点A为中心,把△ADF(顺时针或逆时针)旋转角A度,至△ABF';结论1、△AMN全等于△AMN',MN=MN';2、△AEF全等于△AEF',EF=EF'→BE+EF=EF;3、;4、△CEF的周长等于正方形ABCD的一半;
5、点A到EF的距离等于正方形的边长(AB)。应用环境1:顶角为特殊角的等腰三角形,如顶角为30°、45°、60°、75°或它们的补角、90°;2:正方形、菱形等也能产生等腰三角形;3:过底角顶点的两条相关直线:底边、底角两条平分线、腰上的两高、底角的邻补角的两条角平分线,底角的邻余角另外两边等;正方形或棱形的另外两边;4:此等腰三角形的相关弦.【模型拓展】证明90°中夹45°(正方形中的半角模型)条件:在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。结论①:图1、2中,EF=BE+FD证明:如图3中,将AF绕点A顺时针旋转90°,F点落在F’处,连接BF’,∴∠EAF’=90°-∠EAF=90°-45°=45°=∠EAF,且AE=AE,AF=AF’,∴△FAE≌△F’AE(SAS),∴EF=EF’,又∠D=∠ABF’=90°,∠ABE=90°,∴∠ABE+∠ABF’=90°+90°=180°,∴F’、B、E三点共线,
∴EF’=BE+BF’=BE+DF。结论②:图2中MN²=BM²+DN²;证明:如图4中,将AN绕点A顺时针旋转90°,N点落在N’处,连接AN’、BN’、MN’,∴∠N’AM=90°-∠EAF=90°-45°=45°=∠MAN,且AM=AM,AN=AN’,∴△MAN’≌△MAN(SAS),∴MN=MN’,又∠ADN=45°=∠ABN’,∠ABD=45°,∴∠MBN’=∠ABD+∠ABN’=45°+45°=90°,∴在Rt△MBN’中,MN’²=BM²+BN’²,即MN²=BM²+BN’²。结论③:图1、2中EA平分∠BEF,FA平分∠DFE。证明过程见证明①中时△FAE≌△F’AE即可。结论④:图1、2中。证明:如图5中,过A点作AH⊥EF于H点,由结论③可知:∠AEH=∠AEB,且∠AHE=∠ABE=90°,AE=AE,∴△AEB≌△AEH(AAS),
∴AH=AB=AD,进而可以证明△AHF≌△ADF(AAS),∴.【题型演练】一、单选题1.如图,四边形ABCD内接于⊙O,AB=AD,∠BCD=120°,E、F分别为BC、CD上一点,∠EAF=30°,EF=3,DF=1.则BE的长为()A.1 B.2 C.3 D.42.如图,点M、N分别是正方形ABCD的边BC、CD上的两个动点,在运动过程中保持∠MAN=45°,连接EN、FM相交于点O,以下结论:①MN=BM+DN;②BE2+DF2=EF2;③BC2=BF•DE;④OM=OF()A.①②③ B.①②④ C.②③④ D.①②③④二、填空题3.如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD=30°,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.
4.如图,在边长为6的正方形内作,交于点,交于点,连接,将绕点顺时针旋转90°得到,若,则的长为______.5.如图,正方形ABCD的边长为6,点E,F分别在边AB,BC上,若F是BC的中点,且∠EDF=45°,则DE的长为_____.三、解答题6.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.7.已知,如图所示,正方形中,,分别在边,上,且,,分别交
于,,连,求证:①
②.8.如图,在正方形ABCD中,E、F是对角线BD上两点,将绕点A顺时针旋转后,得到,连接EM,AE,且使得.(1)求证:;(2)求证:.9.已知:边长为4的正方形ABCD,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=45°,连接EF.求证:EF=BE+DF.思路分析:(1)如图1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,∴把△ABE绕点A逆时针旋转90°至△ADE',则F、D、E'在一条直线上,∠E'AF=度,……根据定理,可证:△AEF≌△AE'F.
∴EF=BE+DF.类比探究:(2)如图2,当点E在线段CB的延长线上,探究EF、BE、DF之间存在的数量关系,并写出证明过程;拓展应用:(3)如图3,在△ABC中,AB=AC,D、E在BC上,∠BAC=2∠DAE.若S△ABC=14,S△ADE=6,求线段BD、DE、EC围成的三角形的面积.10.如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.11.(1)如图1,在正方形ABCD中,E是AB上一点,G是AD上一点,∠ECG=45°,求证EG=BE+GD.(2)请用(1)的经验和知识完成此题:如图2,在四边形ABCD中,AG//BC(BC>AG),∠B=90°,AB=BC=12,E是AB上一点,且∠ECG=45°,BE=4,求EG的长?12.如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.
(1)求证:(2)求证:四边形BFGH是正方形;(3)求证:ED平分∠CEI13.学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD中,∠EAF=45°,求证:EF=BE+DF.”小明同学的思路:∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=90°.把△ABE绕点A逆时针旋转到的位置,然后证明,从而可得.,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD中,AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车行业工程师的工作总结
- 【八年级下册历史】第12课 民族大团结 同步练习
- 2024年秋叶飘教案
- 2024年秋天的怀念教案篇
- 2024年美术教案汇编8篇
- 制造业合同范本(2篇)
- 2024无锡经典财税独家资料初级会计职称考试《初级会计经济法基础》考试密卷
- 2024年福建省《公共基础之管理公文》必刷500题带解析含答案ab卷
- 【人教版九上历史】背诵秘笈
- gps静态测量实习报告(实习报告,静态,测量)
- 2024-2030年中国机场跑道异物碎片(FOD)检测系统行业市场发展趋势与前景展望战略研究报告
- 学校体育学智慧树知到答案2024年湖南科技大学
- 英语完形填空练习题20篇
- 农业农村基础知识考试复习题库宝典(600多题)
- 《财务会计基础》课件-认知原始凭证
- 造价咨询服务工程审计服务方案(技术方案)
- SMP-04-013-00 药品受托企业审计评估管理规程
- 2024中考英语试题研究《汉堡包写作法助力中考英语书面表达》课件
- 2025高考物理总复习专题强化运动学图像问题
- 建筑公司绩效考核办法1
- 服务质量保障措施及进度保障措施
评论
0/150
提交评论