2024届山东省青岛市平度实验数学八下期末考试模拟试题含解析_第1页
2024届山东省青岛市平度实验数学八下期末考试模拟试题含解析_第2页
2024届山东省青岛市平度实验数学八下期末考试模拟试题含解析_第3页
2024届山东省青岛市平度实验数学八下期末考试模拟试题含解析_第4页
2024届山东省青岛市平度实验数学八下期末考试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省青岛市平度实验数学八下期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为()A.12 B.24 C.36 D.482.小明骑自行车到公园游玩,匀速行驶一段路程后,开始休息,休息了一段时间后,为了尽快赶到目的地,便提高了,车速度,很快到达了公园.下面能反映小明离公园的距离(千米)与时间(小时)之间的函数关系的大致图象是()A. B. C. D.3.如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为()A.2 B.4 C.6 D.84.对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>35.如图直线l1:y=ax+b,与直线l2:y=mx+n交于点A(1,3),那么不等式ax+b<mx+n的解集是()A.x>3

B.x<3

C.x>1

D.x<16.把一张长方形纸片ABCD按如图方式折一下,就一定可以裁出()纸片ABEF.A.平行四边形 B.菱形 C.矩形 D.正方形7.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形 B.平行四边形的对角线互相平分C.矩形的对角线相等 D.对角线相等的四边形是矩形8.以下列各组数为三角形的边长,能构成直角三角形的是()A.1,2,3 B.1,1, C.2,4,5 D.6,7,89.等边三角形的边长为2,则该三角形的面积为()A. B.2 C.3 D.410.如图,在中,,,分别是斜边上的高和中线,,,则的长为A. B.4 C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=5,则DF=_____.12.如图:在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn-1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B2018的坐标是______.13.如图,平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,连接AP,若S△APH=2,则S四边形PGCD=______.14.如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.15.工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长度是否相等,常常还要测量它们的两条对角线是否相等,以确保图形是矩形.这依据的道理是:_______________________________.16.如图,正方形ABCD的边长为,点E、F分别为边AD、CD上一点,将正方形分别沿BE、BF折叠,点A的对应点M恰好落在BF上,点C的对应点N给好落在BE上,则图中阴影部分的面积为__________;17.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.18.如图,在矩形中,点为射线上一动点,将沿折叠,得到若恰好落在射线上,则的长为________.三、解答题(共66分)19.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?20.(6分)分式化简:(a-)÷21.(6分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.22.(8分)如图,在中,,,DF是的中位线,点C关于DF的对称点为E,以DE,EF为邻边构造矩形DEFG,DG交BC于点H,连结CG.求证:≌.若.求CG的长.在的边上取一点P,在矩形DEFG的边上取一点Q,若以P,Q,C,G为顶点的四边形是平行四边形,求出所有满足条件的平行四边形的面积.在内取一点O,使四边形AOHD是平行四边形,连结OA,OB,OC,直接写出,,的面积之比.23.(8分)已知关于x的方程x2-(m+1)x+2(m-1)=0,(1)求证:无论m取何值时,方程总有实数根;(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.24.(8分)已知:如图,四边形ABCD是菱形,AB=AD.求证:(1)AB=BC=CD=DA(2)AC⊥DB(3)∠ADB=∠CDB,∠ABD=∠CBD,∠DAC=∠BAC,∠DCA=∠BCA25.(10分)如图,已知二次函数()的图象与轴交于两点(点在点的左侧),与轴交于点,且,,顶点为.(1)求二次函数的解析式;(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;(3)探索:线段上是否存在点,使为直角三角形?如果存在,求出点的坐标;如果不存在,请说明理由.26.(10分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

首先根据题意画出图形,由一个菱形的边长为5,其中一条对角线长为8,可利用勾股定理,求得另一菱形的对角线长,继而求得答案.【题目详解】解:如图,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴这个菱形的面积为:AC•BD=×6×8=1.故选B.【题目点拨】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于其对角线积的一半.2、C【解题分析】

根据匀速行驶,到终点的距离在减少,休息时路程不变,休息后的速度变快,路程变化快,可得答案.【题目详解】A.路程应该在减少,故A不符合题意;B.路程先减少得快,后减少的慢,不符合题意,故B错误;C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;D.休息时路程应不变,不符合题意,故D错误;故选C.【题目点拨】本题考查了函数图象,路程先减少得慢,休息后减少得快是解题关键.3、D【解题分析】

根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.【题目详解】解:∵正方形ABCD,AD=4,∴AB=AD=4=BC,∵BC=2OB,∴OB=2,∴A(2,4),代入y=得:k=8,故选:D.【题目点拨】本题考查了反比例函数与几何问题中k的求解,解题的关键是根据几何图形的性质得出反比例函数图象上点的坐标.4、D【解题分析】

一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【题目详解】∵一次函数,随的增大而增大,∴k-3>0,解得:k>3,故选D.【题目点拨】本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握一次函数的性质是解题关键.5、D【解题分析】

根据函数图象交点左侧直线y=ax+b图象在直线:y=mx+n图象的下面,即可得出不等式ax+b<mx+n的解集.【题目详解】解:∵直线l1:y=ax+b,与直线l2:y=mx+n交于点A(1,3),

∴不等式ax+b<mx+n的解集是:x<1.

故选:D.【题目点拨】本题考查一次函数与不等式,利用数形结合得出不等式的解集是解题的关键.6、D【解题分析】

根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.【题目详解】解:由已知,根据折叠原理,对折后可得:,,四边形是正方形,故选:D.【题目点拨】此题考查了正方形的判定和折叠的性质,关键是由折叠原理得到四边形有三个直角,且一组邻边相等.7、D【解题分析】试题分析:根据菱形、矩形的判定,平行四边形、矩形的性质进行判断:A.对角线垂直平分的四边形是菱形,所以A正确;B.平行四边形的对角线相互平分,所以B正确;C.矩形的对角线相等,所以C正确;D.对角线相等的平行四边形是矩形,所以D错误;考点:菱形、矩形的判定,平行四边形、矩形的性质.8、B【解题分析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】A、12+22≠32,故不是直角三角形,故此选项错误;B、12+12=()2,故是直角三角形,故此选项正确;C、22+42≠52,故不是直角三角形,故此选项错误;D、62+72≠82,故不是直角三角形,故此选项错误.故选B.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9、A【解题分析】分析:如图,作CD⊥AB,则CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的长,代入面积计算公式,解答出即可;详解:作CD⊥AB,

∵△ABC是等边三角形,AB=BC=AC=2,

∴AD=1,

∴在直角△ADC中,

CD===,

∴S△ABC=×2×=;

故选A.点睛:本题主要考查了等边三角形的性质及勾股定理的应用,根据题意,画出图形可利于解答,体现了数形结合思想.10、C【解题分析】

由直角三角形斜边上的中线求得AB的长度,再根据含30°角直角三角形的性质求得AC的长度,最后通过解直角△ACD求得CD的长度.【题目详解】如图,在中,,是斜边上的中线,,.,,.是斜边上的高,故选:.【题目点拨】考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.二、填空题(每小题3分,共24分)11、1【解题分析】

根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.【题目详解】解:∵D、E分别为AB、AC的中点,∴DE=12BC=2.5∵AF⊥CF,E为AC的中点,∴EF=12AC=1.5∴DF=DE﹣EF=1,故答案为:1.【题目点拨】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.12、【解题分析】【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.【题目详解】∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,∴B2018坐标(22018-1,22018-1).故答案为【题目点拨】本题考查一次函数图象上点的特征,正方形的性质等知识,解题的关键是学会从特殊到一般的探究方法,利用规律解决问题,属于中考填空题中的压轴题.13、1.【解题分析】

根据平行四边形的判定定理得到四边形HPFD、四边形PGCF是平行四边形,根据平行四边形的性质、三角形的面积公式计算即可.【题目详解】∵EF∥BC,GH∥AB,∴四边形HPFD、四边形PGCF是平行四边形,∵S△APH=2,CG=2BG,∴S△DPH=2S△APH=4,∴平行四边形HPFD的面积=1,∴平行四边形PGCF的面积=×平行四边形HPFD的面积=4,∴S四边形PGCD=4+4=1,故答案为1.【题目点拨】本题考查的是平行四边形的判定和性质、三角形的面积计算,掌握平行四边形的性质定理是解题的关键.14、【解题分析】

如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.【题目详解】解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.

∵AB=AC=4,,

∴CH=1,AH=NB=,BC=2,

∵AM∥BC,

∴∠M=∠DBC,

在△ADM和△CDB中,,

∴△ADM≌△CDB(AAS),

∴AM=BC=2,DM=BD,

在RT△BMN中,∵BN=,MN=3,

∴,

∴BD=DM=,

∵BC=CD=BE=DE=2,

∴四边形EBCD是菱形,

∴EC⊥BD,BO=OD=,EO=OC,

∵AD=DC,

∴AE∥OD,AE=2OD=.

故答案为.【题目点拨】本题考查翻折变换、全等三角形的判定和性质、菱形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是添加辅助线构造全等三角形,学会转化的数学数学,利用三角形中位线发现AE=2OD,求出OD即可解决问题,属于中考常考题型.15、对角线相等的平行四边形是矩形.【解题分析】

根据已知条件和矩形的判定定理(对角线相等的平行四边形为矩形)解答即可.【题目详解】解:∵门窗所构成的形状是矩形,

∴根据矩形的判定(对角线相等的平行四边形为矩形)可得出.

故答案为:对角线相等的平行四边形是矩形.【题目点拨】本题主要考查矩形的判定定理:对角线相等的平行四边形为矩形,熟练掌握矩形的判定定理是解题的关键.16、【解题分析】分析:设NE=x,由对称的性质和勾股定理,用x分别表示出ON,OE,OM,在直角△OEN中用勾股定理列方程求x,则可求出△OBE的面积.详解:连接BO.∠ABE=∠EBF=∠FBC=30°,AE=1=EM,BE=2AE=2.∠BNF=90°,∠NEO=60°,∠EON=30°,设EN=x,则EO=2x,ON=x=OM,∴OE+OM=2x+x=(2+)x=1.∴x==2-.∴ON=x=(2-)=2-3.∴S=2S△BOE=2×(×BE×ON)=2×[×2×(2-3)]=4-6.故答案为.点睛:翻折的本质是轴对称,所以注意对称点,找到相等的线段和角,结合勾股定理列方程求出相关的线段后求解.17、y=x+3【解题分析】因为一次函数y=kx+3的图象过点A(1,4),所以k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案是:y=x+3【题目点拨】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).18、或15【解题分析】

如图1,根据折叠的性质得到AB=A=5,E=BE,根据勾股定理求出BE,如图2,根据折叠的性质得到A=AB=5,求得AB=BF=5,

根据勾股定理得到CF=4根据相似三角形的性质列方程即可得到结论.【题目详解】∵四边形ABCD是矩形,∴AD=BC=3,CD=AB=5,如图1,由折叠得AB=A=5,E=BE,∴,∴,在Rt△中,,∴,解得BE=;如图2,由折叠得AB=A=5,∵CD∥AB,∴∠=∠,∵,∴,∵AE垂直平分,∴BF=AB=5,∴,∵CF∥AB,∴△CEF∽△ABE,∴,∴,∴BE=15,故答案为:或15.【题目点拨】此题考查矩形的性质,折叠的性质,勾股定理,相似三角形的判定及性质,根据折叠的要求正确画出符合题意的图形进行解答是解题的关键.三、解答题(共66分)19、(1)A型:100元,B型:150元;(2)①y=-50x+15000;②34台A型电脑和66台B型,利润最大,最大利润是1元【解题分析】

(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;然后根据销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元列出方程组,然后求解即可;(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【题目详解】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①根据题意得,y=100x+150(100-x),即y=-50x+15000;②据题意得,100-x≤2x,解得x≥33,∵y=-50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100-x=66,此时最大利润是y=-50×34+15000=1.即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是1元.【题目点拨】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.20、a-b【解题分析】

利用分式的基本性质化简即可.【题目详解】===.【题目点拨】此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.21、(3)a=,方程的另一根为;(2)答案见解析.【解题分析】

(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.【题目详解】(3)将x=2代入方程,得,解得:a=.将a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根为;(2)①当a=3时,方程为2x=3,解得:x=3.②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.当a=2时,原方程为:x2+2x+3=3,解得:x3=x2=-3;当a=3时,原方程为:-x2+2x-3=3,解得:x3=x2=3.综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.22、(1)证明见解析;(2)①1;②或或.(3):3:1.【解题分析】

根据矩形的性质、翻折不变性利用HL即可证明;想办法证明即可解决问题;共三种情形画出图形,分别解决问题即可;如图5中,连接OD、OE、OB、首先证明四边形DOHC是矩形,求出OD、OH、OE即可解决问题.【题目详解】如图1中,四边形DEFG是矩形,,,由翻折不变性可知:,,,,,≌,如图1中,≌,,,,,,,,,,,,,,,.如图2中,当点P与A重合,点Q与E重合时,四边形PQGC是平行四边形,此时如图3中,当四边形QPGC是平行四边形时,.如图4中,当四边形PQCG是平行四边形时,作于M,CE交DF于N.易知,,如图中,当四边形PQCG是平行四边形时,,综上所述,满足条件的平行四边形的面积为或或.如图5中,连接OD、OE、OB、OC.四边形AOHD是平行四边形,,,四边形CDOH是平行四边形,,四边形CDOH是矩形,,≌,,,,,,,,:::::3:1.【题目点拨】本题考查四边形综合题、解直角三角形、矩形的性质、平行四边形的判定和性质、直角三角形30度角性质、全等三角形的判定和性质、等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.23、证明见解析1和2【解题分析】

(1)根据方程的系数结合根的判别式即可得出△=(m-3)2≥0,由此即可证出结论;(2)等腰三角形的腰长为1,将x=1代入原方程求出m值,将m的值代入原方程中解方程即可得出方程的解,再根据三角形的三边关系确定△ABC的三条边,结合三角形的周长即可得出结论.【题目详解】(1)证明:∵△=[﹣(m+1)]2﹣1×2(m﹣1)=m2﹣6m+9=(m﹣3)2≥0,∴无论m取何值,这个方程总有实数根;(2)等腰三角形的腰长为1,将x=1代入原方程,得:16﹣1(m+1)+2(m﹣1)=0,解得:m=5,∴原方程为x2﹣6x+8=0,解得:x1=2,x2=1.组成三角形的三边长度为2、1、1;所以三角形另外两边长度为1和2.【题目点拨】本题考查了根的判别式,三角形三边关系,等腰三角形的性质以及解一元二次方程,⑴牢记当△≥0时,方程有实数根,⑵代入x=1求出m的值是解决本题的关键.24、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解题分析】

(1)根据菱形定义:一组邻边相等的平行四边形是菱形即可解答;(2)利用SSS证明△ADO≌△CDO,可得:∠AOD=∠COD,又因为∠AOD+∠COD=180°,所以∠AOD=∠COD=90°即可得出AC⊥DB;(3)由△ADO≌△CDO,再根据全等三角形对应角相等,两直线平行,内错角相等即可解答.【题目详解】证明:(1)∵四边形ABCD是菱形,∴AB=CD,AD=CB.又∵AB=AD,∴AB=BC=CD=DA.(2)在△ADO和△CDO中,∵DA=DC,DO=DO,AO=CO,∴△ADO≌△CDO.∴∠AOD=∠COD.∵∠AOD+∠COD=18

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论