版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市第一中学数学八年级第二学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在中,已知,,,则的长为()A.4 B.5 C.6 D.72.如图的图形中只能用其中一部分平移可以得到的是()A. B.C. D.3.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为()A.x(x-1)=90B.x(x-1)=2×90C.x(x-1)=90÷2D.x(x+1)=904.等腰三角形的底角是70°,则顶角为()A. B. C. D.5.小明研究二次函数(为常数)性质时有如下结论:①该二次函数图象的顶点始终在平行于x轴的直线上;②该二次函数图象的顶点与x轴的两个交点构成等腰直角三角形;③当时,y随x的增大而增大,则m的取值范围为;④点与点在函数图象上,若,,则.其中正确结论的个数为()A.1 B.2 C.3 D.46.平行四边形中,,则的度数是()A. B. C. D.7.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的面积是()A.24 B.30 C.40 D.488.A、B两点在一次函数图象上的位置如图所示,两点的坐标分别是,,下列结论正确的是A. B. C. D.9.王老师对甲、乙两人五次数学成绩进行统计,两人平均成绩均为90分,方差S甲2=12,S乙2=51,则下列说法正确的是()A.甲、乙两位同学的成绩一样稳定B.乙同学的成绩更稳定C.甲同学的成绩更稳定D.不能确定10.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限 B.第二象限 C.第三象限 D.第四象限11.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣312.化简的结果是()A.3 B.2 C.2 D.2二、填空题(每题4分,共24分)13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm.14.将一张A3纸对折并沿折痕裁开,得到2张A4纸.已知A3纸和A4纸是两个相似的矩形,则矩形的短边与长边的比为______.15.《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为____________.16.一组数据;1,3,﹣1,2,x的平均数是1,那么这组数据的方差是_____.17.如图,在矩形中,分别是边和的中点,,则的长为__________.18.如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________三、解答题(共78分)19.(8分)如图,在正方形ABCD中,P是CD边上一点,DF⊥AP,BE⊥AP.求证:AE=DF.20.(8分)我们知道:“距离地面越高,气温越低.”下表表示的是某地某时气温随高度变化而变化的情况距离地面高度012345气温201482﹣4﹣10(1)请你用关系式表示出与的关系;(2)距离地面的高空气温是多少?(3)当地某山顶当时的气温为,求此山顶与地面的高度.21.(8分)如图1,在平面直角坐标系中点,,以为顶点在第一象限内作正方形.反比例函数、分别经过、两点(1)如图2,过、两点分别作、轴的平行线得矩形,现将点沿的图象向右运动,矩形随之平移;①试求当点落在的图象上时点的坐标_____________.②设平移后点的横坐标为,矩形的边与,的图象均无公共点,请直接写出的取值范围____________.22.(10分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.23.(10分)如图,四边形是矩形纸片且,对折矩形纸片,使与重合,折痕为,展平后再过点折叠矩形纸片,使点落在上的点处,折痕与相交于点,再次展开,连接,.(1)连接,求证:是等边三角形;(2)求,的长;(3)如图,连接将沿折叠,使点落在点处,延长交边于点,已知,求的长?24.(10分)(1)分式化简()÷;(2)若(1)中a为正整数,分式的值也为正整数,请直接写出所有符合条件的a的值25.(12分)解不等式组,并写出它的所有非负整数解.26.如图,在□ABCD中,AB=10,AD=8,AC⊥BC,求□ABCD的面积.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
根据勾股定理计算即可.【题目详解】由勾股定理得:AB=.故选B.【题目点拨】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.2、B【解题分析】
根据平移的性质,对选项进行一一分析,排除错误答案.【题目详解】、图形为轴对称所得到,不属于平移;、图形的形状和大小没有变化,符合平移性质,是平移;、图形为旋转所得到,不属于平移;、最后一个图形形状不同,不属于平移.故选.【题目点拨】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.3、A【解题分析】
如果设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,则一共送了x(x﹣1)张,再根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.【题目详解】设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.故选A.【题目点拨】本题考查了一元二次方程的应用.解题的关键是读清题意,找准数量关系,列出方程.4、A【解题分析】
根据等腰三角形的性质可得另一底角的度数,再根据三角形内角和定理即可求得顶角的度数.【题目详解】解:∵等腰三角形的底角是70°,∴其顶角=180°-70°-70°=40°,故选:A.【题目点拨】此题主要考查等腰三角形的性质及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.5、D【解题分析】
根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【题目详解】解:二次函数=-(x-m)1+1(m为常数)
①∵顶点坐标为(m,1)且当x=m时,y=1
∴这个函数图象的顶点始终在直线y=1上
故结论①正确;
②令y=0,得-(x-m)1+1=0解得:x=m-1,x=m+1∴抛物线与x轴的两个交点坐标为A(m-1,0),B(m+1,0)则AB=1∵顶点P坐标为(m,1)
∴PA=PB=,
∴∴是等腰直角三角形∴函数图象的顶点与x轴的两个交点构成等腰直角三角形
故结论②正确;③当-1<x<1时,y随x的增大而增大,且-1<0
∴m的取值范围为m≥1.故结论③正确;
④∵x1+x1>1m
∴>m
∵二次函数y=-(x-m)1+1(m为常数)的对称轴为直线x=m
∴点A离对称轴的距离小于点B离对称轴的距离
∵x1<x1,且-1<0
∴y1>y1故结论④正确.
故选:D.【题目点拨】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.6、D【解题分析】
根据平行四边形的对角相等、相邻内角互补求解.【题目详解】∵平行四形ABCD∴∠B=∠D=180°−∠A∴∠B=∠D=80°∴∠B+∠D=160°故选:D.【题目点拨】本题考查的是利用平行四边形的性质,必须熟练掌握.7、A【解题分析】
根据菱形的面积等于对角线乘积的一半即可解决问题.【题目详解】∵四边形ABCD是菱形,AC=6,BD=8,∴菱形ABCD的面积=⋅AC⋅BD=×6×8=24.故选A.【题目点拨】此题考查菱形的性质,解题关键在于计算公式.8、B【解题分析】
根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.【题目详解】∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A.C.
D都不对,只有选项B正确,故选B.9、C【解题分析】分析:先根据甲的方差比乙的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.详解:∵S2甲=12、S2乙=51,∴S2甲<S2乙,∴甲比乙的成绩稳定;故选C.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、C【解题分析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C11、D【解题分析】∵方程ax+b=0的解是直线y=ax+b与x轴的交点横坐标,∴方程ax+b=0的解是x=-3.故选D.12、A【解题分析】
直接利用二次根式的性质化简得出答案.【题目详解】.故选A.【题目点拨】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.二、填空题(每题4分,共24分)13、8【解题分析】
先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.【题目详解】(),由勾股定理得(),则玻璃棒露在容器外的长度的最小值是().故答案为.【题目点拨】考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.14、【解题分析】
先表示出对折后的矩形的长和宽,再根据相似矩形对应边成比例列出比例式,然后求解.【题目详解】解:设原来矩形的长为x,宽为y,则对折后的矩形的长为y,宽为,∵得到的两个矩形都和原矩形相似,∴x:y=y:,解得x:y=:1.∴矩形的短边与长边的比为1:,故答案为:.【题目点拨】本题主要利用相似多边形对应边成比例的性质,需要熟练掌握.15、.【解题分析】
设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【题目详解】解:设AC=x.∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC1+BC1=AB1,即x1+31=(10﹣x)1.解得:x.故答案为:【题目点拨】本题考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.16、1【解题分析】
先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x1,…xn的平均数为,),则方差.【题目详解】解:x=1×5﹣1﹣3﹣(﹣1)﹣1=0,s1=[(1﹣1)1+(1﹣3)1+(1+1)1+(1﹣1)1+(1﹣0)1]=1.故答案为1.【题目点拨】本题考查了方差的定义:一般地设n个数据,x1,x1,…xn的平均数为,),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、6【解题分析】
连接AC,根据三角形中位线性质可知AC=2EF,最后根据矩形对角线相等进一步求解即可.【题目详解】如图所示,连接AC,∵E、F分别为AD、CD的中点,EF=3,∴AC=2EF=6,∵四边形ABCD为矩形,∴BD=AC=6,故答案为:6.【题目点拨】本题主要考查了三角形中位线性质与矩形性质的综合运用,熟练掌握相关概念是解题关键.18、2【解题分析】
解:∵四边形ABCD是菱形,AC=2,BD=,∴∠ABO=∠CBO,AC⊥BD.∵AO=1,BO=,∴AB=2,∴sin∠ABO==∴∠ABO=30°,∴∠ABC=∠BAC=60°.由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;∵∠ABO=∠CBO,∴BE=BF,∴△BEF是等边三角形,∴∠BEF=60°,∴∠OEF=60°,∴∠AEO=60°,∵∠BAC=60°.∴△AEO是等边三角形,,∴AE=OE,∴BE=AE,同理BF=FC,∴EF是△ABC的中位线,∴EF=AC=1,AE=OE=1.同理CF=OF=1,∴五边形AEFCD的周长为=1+1+1+2+2=2.故答案为2.三、解答题(共78分)19、详见解析【解题分析】
根据正方形的性质可得AB=AD,∠BAD=90°,再根据∠AEB=∠AFD=90°,∠ABE+∠BAE=90°,得到∠ABE=∠DAF,然后通过“角角边”证得△ABE≌△ADF,则可得AE=DF.【题目详解】证明∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠DAF+∠BAE=90°,又∵DF⊥AP,BE⊥AP,∴∠AEB=∠AFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAF,在△ABE与△ADF中,,∴△ABE≌△ADF(AAS),∴AE=DF(全等三角形对应边相等).20、(1);(2);(3)米.【解题分析】
(1)根据表中的数据写出函数关系式;(2)把相关数据代入函数关系式求解即可;(3)把相关数据代入函数关系式求解即可.【题目详解】(1)由表格数据可知,每升高1千米,气温下降6,可得与和函数关系式为:(2)(3)【题目点拨】本题主要考查了函数关系式及函数值,解题的关键是根据表中的数据写出函数关系式.21、【解题分析】
(1)如图1中,作DM⊥x轴于M.利用全等三角形的性质求出点D坐标,点C坐标,得到k1,k2的值,设平移后点D坐标为(m,),则E(m−2,),由题意:(m−2)•=3,解方程即可;(2)设平移后点D坐标为(a,),则C(a−2,+1),当点C在y=上时,(a−2)(+1)=6,解得a=1+或1−(舍弃),观察图象可得结论;【题目详解】解:(1)如图1中,作DM⊥x轴于M.∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵∠AOB=∠AMD=90°,∴∠OAB+∠OBA=90°,∠OAB+∠DAM=90°,∴∠ABO=∠DAM,∴△OAB≌△MDA(AAS),∴AM=OB=1,DM=OA=2,∴D(3,2),∵点D在上,∴k2=6,即,同法可得C(1,3),∵点C在上,∴k1=3,即,设平移后点D坐标为(m,),则E(m−2,),由题意:(m−2)•=3,解得m=4,∴D(4,);(2)设平移后点D坐标为(a,),则C(a−2,+1),当点C在y=上时,(a−2)(+1)=6,解得a=1+或1−(舍弃),观察图象可知:矩形的边CE与,的图象均无公共点,则a的取值范围为:4<a<1+.【题目点拨】本题考查反比例函数综合题、正方形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.22、解:(1)如图所示:点A1的坐标(2,﹣4)。(2)如图所示,点A2的坐标(﹣2,4)。【解题分析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标。(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2。23、(1)见解析;(2);(3).【解题分析】
(1)由折叠知,据此得∠ENB=30°,∠ABN=60°,结合AB=BN即可得证;(2)由(1)得∠ABN=60°,由AB折叠到BN知∠ABM=30°,结合AB=6得,证EQ为△ABM的中位线得,再求出EN=,根据QN=EN-EQ可得答案;(3)连接FH,MK⊥BC,证Rt△FGH≌Rt△FCH得G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度酒店消防系统设备更新与优化合同3篇
- 2025年度私人承包数据中心节能减排建筑合同范本3篇
- 2025年教育培训机构销售居间代理协议3篇
- 2025年度个人股份质押合同标准范本4篇
- 2025年度个人二手车转让协议书(全新升级版)3篇
- 美容院消防安全责任及管理协议书(二零二五年度)4篇
- 湿地湖施工方案
- 毕业答辩指导模板
- 2025年度个人装修借款合同答辩状编制指南4篇
- 2024年中级经济师考试题库含答案(能力提升)
- 2024-2025学年人教版数学六年级上册 期末综合试卷(含答案)
- 收养能力评分表
- 山东省桓台第一中学2024-2025学年高一上学期期中考试物理试卷(拓展部)(无答案)
- 中华人民共和国保守国家秘密法实施条例培训课件
- 管道坡口技术培训
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- 皮肤储存新技术及临床应用
- 外研版七年级英语上册《阅读理解》专项练习题(含答案)
- 2024年辽宁石化职业技术学院单招职业适应性测试题库必考题
- 上海市复旦大学附中2024届高考冲刺模拟数学试题含解析
评论
0/150
提交评论