




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省安阳市正一中学八年级数学第二学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.正方形具有而菱形不一定具有的性质是()A.四边相等 B.对角线相等 C.对角线互相垂直 D.对角线互相平分2.如果一个三角形的三边长分别为6,a,b,且(a+b)(a-b)=36,那么这个三角形的形状为()A.锐角三角形 B.钝角三角形C.直角三角形 D.等边三角形3.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB,若BE=4,则AE的长为()A.1 B.1.5 C.2 D.2.54.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B. C. D.5.下列命题中,是真命题的是()A.平行四边形的对角线一定相等B.等腰三角形任意一条边上的高线、中线和角平分线都三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边6.甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大 B.乙的波动比甲的波动大C.甲,乙的波动大小一样 D.甲,乙的波动大小无法确定7.如图,在平行四边形ABCD中,下列结论一定正确的是().A.AB=AD B.OA=OC C.AC=BD D.∠BAD=∠ABC8.如图,矩形ABCD中,AB=8,BC=4,P,Q分别是直线AB,AD上的两个动点,点在边上,,将沿翻折得到,连接,,则的最小值为()A. B. C. D.9.已知,如图一次函数y1=ax+b与反比例函数y2=的图象如图示,当y1<y2时,x的取值范围是(
)A.x<2
B.x>5
C.2<x<5
D.0<x<2或x>510.最早记载勾股定理的我国古代数学名著是()A.《九章算术》 B.《周髀算经》 C.《孙子算经》 D.《海岛算经》二、填空题(每小题3分,共24分)11.已知点M(-1,),N(,-2)关于x轴对称,则=_____12.3-1×13.函数y=的自变量x的取值范围是_____.14.菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长是_______cm.15.如图,将5个边长都为4cm的正方形按如图所示的方法摆放,点A、B、C、D是正方形的中心,则正方形重叠的部分(阴影部分)面积和为_____.16.如图,在中,对角线与相交于点,是边的中点,连结.若,,则的度数为_______.17.已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a与b的大小关系是_____.18.化简的结果为________.三、解答题(共66分)19.(10分)已知,求代数式的值。20.(6分)如图所示,P(a,3)是直线y=x+5上的一点,直线y=k1x+b与双曲线相交于P、Q(1,m).(1)求双曲线的解析式及直线PQ的解析式;(2)根据图象直接写出不等式>k1x+b的解集.(3)若直线y=x+5与x轴交于A,直线y=k1x+b与x轴交于M求△APQ的面积21.(6分)计算:(1)÷-×+;(2)(-1)101+(π-3)0+-.22.(8分)如图1,两个全等的直角三角板ABC和DEF重叠在一起,其中∠ACB=∠DFE=90°,∠A=60°,AC=1,固定△ABC,将△DEF沿线段AB向右平移(即点D在线段AB上),回答下列问题:(1)如图2,连结CF,四边形ADFC一定是形.(2)连接DC,CF,FB,得到四边形CDBF.①如图3,当点D移动到AB的中点时,四边形CDBF是形.其理由?②在△DEF移动过程中,四边形CDBF的形状在不断改变,但它的面积不变化,其面积为.23.(8分)阅读下列材料,并解爷其后的问题:我们知道,三角形的中位线平行于第一边,且等于第三边的一半,我们还知道,三角形的三条中位线可以将三角形分成四个全等的一角形,如图1,若D、E、F分别是三边的中点,则有,且(1)在图1中,若的面积为15,则的面积为___________;(2)在图2中,已知E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形EFGH是平行四边形;(3)如图3中,已知E、F、G、H分别是AB、BC、CD、AD的中点,,则四边形EFGH的面积为___________.24.(8分)如图1,直线与轴交于点,与轴交于点,.(1)求两点的坐标;(2)如图2,以为边,在第一象限内画出正方形,并求直线的解析式.25.(10分)某校为了对甲、乙两个班的综合情况进行评估,从行规、学风、纪律三个项目亮分,得分情况如下表:行规学风纪律甲班838890乙班938685(1)若根据三项得分的平均数从高到低确定名次,那么两个班级的排名顺序怎样?(2)若学校认为这三个项目的重要程度有所不同,而给予“行规”“学风”“纪律”三个项目在总分中所占的比例分别为20%、30%、50%,那么两个班级的排名顺序又怎样?26.(10分)随着生活水平的提高,人们对饮水质量的需求越来越高,我市某公司根据市场需求准备销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用48000元购进A型净水器与用36000元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共400台进行销售,其中A型的台数不超过B型的台数,A型净水器每台售价1500元,B型净水器每台售价1100元,怎样安排进货才能使售完这400台净水器所获利润最大?最大利润是多少元?
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
观察四个选项,分别涉及了四条边和对角线,我们应对照正方形和菱形边及对角线的性质,找出不同即可.【题目详解】正方形和菱形的四条边均相等,每条对角线均平分一组对角,正方形两条对角线相等且互相垂直平分,菱形对角线互相垂直且平分,但不相等.故选B.【题目点拨】本题考查了正方形和菱形性质的知识,解决本题的关键是熟练掌握正方形和菱形的性质.2、C【解题分析】
先根据平方差公式对已知等式进行化简,再根据勾股定理的逆定理进行判定即可.【题目详解】解:∵(a+b)(a-b)=36,∴,∴,∴三角形是直角三角形,故选C.【题目点拨】本题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.3、C【解题分析】
根据线段的垂直平分线的性质得到EC=EB=4,根据直角三角形的性质计算即可.【题目详解】∵DE是BC的垂直平分线,∴EC=EB=4,∴∠ECB=∠B=30°,∵CE平分∠ACB,∴∠ECB=∠ACE=30°,∴∠A=90°,又∠ACE=30°,∴AE=EC=2,故选C.【题目点拨】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4、B【解题分析】
通过一次函数的定义即可解答.【题目详解】解:已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,故k>0,即一次函数y=x+k的图象过一二三象限,答案选B.【题目点拨】本题考查一次函数的定义与性质,熟悉掌握是解题关键.5、C【解题分析】
根据平行四边形的性质、等腰三角形的性质、中位线定理、三边关系逐项判断即可.【题目详解】解:A、平行四边形的对角线互相平分,说法错误,故A选项错误;
B、等边三角形同一条边上的高线、中线和对角的平分线三线合一,说法错误,故B选项错误;
C、三角形的中位线平行于第三边且等于它的一半,说法正确,故C选项正确;
D、三角形的两边之和大于第三边,说法错误,故D选项错误.
故选:C.【题目点拨】本题考查平行四边形的性质、等边三角形的相关性质、三角形的中位线定理、三角形的三边关系,解答关键是熟记相关的性质与判定.6、A【解题分析】
根据方差的定义,方差越小数据越稳定,故可选出正确选项.【题目详解】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.故选A.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、B【解题分析】
根据平行四边形的性质分析即可.【题目详解】由平行四边形的性质可知:①边:平行四边形的对边相等②角:平行四边形的对角相等③对角线:平行四边形的对角线互相平分.所以四个选项中A、C、D不正确,故选B.【题目点拨】此题主要考查了平行四边形的性质,正确把握平行四边形的性质是解题关键.8、B【解题分析】
作点C关于AB的对称点H,连接PH,EH,由已知求出CE=6,CH=8,由勾股定理得出EH==10,由SAS证得△PBC≌△PBH,得出CP=PH,PF+PC=PF+PH,当E、F、P、H四点共线时,PF+PH值最小,即可得出结果.【题目详解】解:作点C关于AB的对称点H,连接PH,EH,如图所示:∵矩形ABCD中,AB=8,BC=4,DE=2,∴CE=CD−DE=AB−DE=6,CH=2BC=8,∴EH==10,在△PBC和△PBH中,,∴△PBC≌△PBH(SAS),∴CP=PH,∴PF+PC=PF+PH,∵EF=DE=2是定值,∴当E、F、P、H四点共线时,PF+PH值最小,最小值=10−2=8,∴PF+PD的最小值为8,故选:B.【题目点拨】本题考查翻折变换、矩形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.9、D【解题分析】
根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x的范围即可.【题目详解】根据题意得:当y1<y2时,x的取值范围是0<x<2或x>1.故选D.【题目点拨】本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,灵活运用数形结合思想是解答本题的关键.10、B【解题分析】
由于《周髀算经》是我国最古老的一部天文学著作,不但记载了勾股定理,还详细的记载了有关“勾股定理”公式以及证明方法,所以是最早有记载的.【题目详解】最早记载勾股定理的我国古代数学名著是《周髀算经》,故选:B.【题目点拨】考查了数学核心素养的知识,了解最早记载勾股定理的我国古代数学名著是解题的依据.二、填空题(每小题3分,共24分)11、1【解题分析】
若P的坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y)由此可求出a和b的值,问题得解.【题目详解】根据题意,得b=-1,a=2,则ba=(-1)2=1,
故答案是:1.【题目点拨】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.12、3【解题分析】原式=1313、x≤且x≠0【解题分析】
根据题意得x≠0且1﹣2x≥0,所以且.故答案为且.14、20cm【解题分析】
根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【题目详解】解:如图,∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=×6=3cm,
OB=BD=×8=4cm,
根据勾股定理得,AB=,所以,这个菱形的周长=4×5=20cm.
故答案为:20【题目点拨】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.15、16cm2【解题分析】
根据正方形的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.【题目详解】解:∵点A、B、C、D分别是四个正方形的中心∴每一个阴影部分的面积等于正方形的∴正方形重叠的部分(阴影部分)面积和故答案为:【题目点拨】本题考查了正方形的性质以及与面积有关的计算,不规则图形的面积可以看成规则图形面积的和或差,正确理解运用正方形的性质是解题的关键.16、40°【解题分析】
直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.【题目详解】解:,,,对角线与相交于点,是边的中点,是的中位线,,.故答案为:.【题目点拨】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出是的中位线是解题关键.17、a>b【解题分析】试题解析:∵点A(-1,a),B(2,b)在函数y=-3x+4的图象上,∴a=3+4=7,b=-6+4=-2,∵7>-2,∴a>b.故答案为a>b.18、【解题分析】
首先把分子、分母分解因式,然后约分即可.【题目详解】解:==【题目点拨】本题主要考查了分式的化简,正确进行因式分解是解题的关键.三、解答题(共66分)19、【解题分析】
把x的值直接代入,再根据乘法公式进行计算即可.【题目详解】解:当时,【题目点拨】此题主要考查整式的运算,解题的关键是熟知整式的运算公式.20、(1)双曲线的解析式为,线PQ的解析式为:;(2)-2<x<0或x>-1;(3)△APQ的面积为【解题分析】
试题分析:(1)利用代入法求出a的值,然后根据交点可求出m的值,从而求出解析式;(2)根据图像可直接求解出取值范围;(3)分别求出交点,利用割补法求三角形的面积即可.试题解析:(1)把代入中得∴p(-2,3)把代入中,得k=-6∴双曲线解析式为把代入中,得m=-3∴a(1,-6)把时,,时,代入得:∴直线pa解析式为:②-2<x<0或x>-1③在与中,y=0解设x=-1∴M(-1,0)∴==∴△APO面积为【题目详解】请在此输入详解!21、(1)(2)【解题分析】
根据二次根式的性质化简,再合并同类二次根式即可.根据乘方、0指数幂、负整数指数幂及二次根式的性质化简后,再合并即可.【题目详解】(1)÷-×+=(2)(-1)101+(π-3)0+-=【题目点拨】本题考查的是二次根式的性质及实数的运算,掌握二次根式的性质及乘方、0指数幂、负整数指数幂是关键.22、(1)平行四边;(2)①见解析;②【解题分析】
(1)根据平移的性质即可证明四边形ADFC是平行四边形;(2)①根据菱形的判定定理即可求解;②根据四边形CDBF的面积=DF×BC即可求解.【题目详解】解:(1)∵平移∴AC∥DF,AC=DF∴四边形ADFC是平行四边形故答案为平行四边(2)①∵△ACB是直角三角形,D是AB的中点∴CD=AD=BD∵AD=CF,AD∥FC∴BD=CF∵AD∥FC,BD=CF∴四边形CDBF是平行四边形又∵CD=BD∴四边形CDBF是菱形.②∵∠A=60°,AC=1,∠ACB=90°∴BC=,DF=1∵四边形CDBF的面积=DF×BC∴四边形CDBF的面积=【题目点拨】此题主要考查三角形的平移,解题的关键是熟知菱形的判定与性质.23、(1);(2)见解析;(3)1.【解题分析】
(1)由三角形中位线定理得出DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,得出△DEF的面积=△ABC的面积=即可;
(2)连接BD,证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD,FG∥BD,FG=BD,得出EH∥FG,EH=FG,即可得出结论;
(3)证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD=,FG∥BD,FG=BD,得出EH∥FG,EH=FG,证出四边形EFGH是平行四边形,同理:EF∥AC,EF=AC=2,证出EH⊥EF,得出四边形EFGH是矩形,即可得出结果.【题目详解】(1)解:∵D、E、F分别是△ABC三边的中点,
则有DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,
∴△DEF的面积=△ABC的面积=;
故答案为;
(2)证明:连接BD,如图2所示:
∵E、F、G、H分别是AB、BC、CD、AD的中点,
∴EH是△ABD的中位线,FG是△BCD的中位线,
∴EH∥BD,EH=BD,FG∥BD,FG=BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形;
(3)解:∵E、F、G、H分别是AB、BC、CD、AD的中点,
∴EH是△ABD的中位线,FG是△BCD的中位线,
∴EH∥BD,EH=BD=,FG∥BD,FG=BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形,
同理:EF∥AC,EF=AC=2,
∵AC⊥BD,
∴EH⊥EF,
∴四边形EFGH是矩形,
∴四边形EFGH的面积=EH×EF=×2=1.故答案为(1);(2)见解析;(3)1.【题目点拨】本题是四边形综合题目,考查三角形中位线定理、平行四边形的判定、矩形的判定与性质等知识;熟练掌握三角形中位线定理,证明四边形EFGH是平行四边形是解题的关键.24、(1);(2)直线的解析式为.【解题分析】
(1)由题意A(0,-2k),B(2,0),再根据,构建方程即可解决问题;(2)如图2中,作CH⊥x轴于H.利用全等三角形的性质求出点C坐标,再利用待定系数法求出直线CD的解析式即可【题目详解】(1)∵直线与轴交于点,与轴交于点,∴,∵,∴,∴,∵,∴,∴;(2)如图,作轴于点,∵四边形是正方形,∴,∴,∴,∴,∴,∴,∵,∴设直线的解析式为,把代入,得,∴直线的解析式为.【题目点拨】本题考查了一次函数的应用、正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.25、(1)根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.(2)两个班级的排名顺序发生变化,甲班第一,乙班第二.【解题分析】
(1)根据算术平均数的计算方法计算甲、乙班的平均数,通过比较得出得出结论,(2)利用加权平均数的计算方法分别计算甲、乙班的总评成绩,比较做出判断即可.【题目详解】(1)甲班算术平均数:(83+88+90)÷3=87,乙班的算术平均数:(93+86+85)÷3=88,因此第一名是乙班,第二名是甲班,答:根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.(2)甲班的总评成绩:83×20%+88×30
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二手房购房定金协议范文二零二五年
- 二零二五二手房购房协议书样本
- 锅炉安装供暖协议合同书范例
- 全新信用担保协议二零二五年
- 二零二五霍珠的离婚协议书
- 二零二五版车辆质押典当合同书
- 二零二五农庄承包合同
- 二零二五销售代理合同系何种合同法律关系
- 中国公益行业
- 2025高端公寓物业管理服务合同范本(合同样式)
- 2024年陪诊师准入理论考核试题
- 2024年京福铁路客运专线安徽有限责任公司招聘笔试冲刺题(带答案解析)
- 《人生就像自行车》课件
- 吉利汽车人才测评试题在线测试
- 新版医疗机构消毒技术规范
- smc片材模压工艺特点
- 【工商管理专业毕业综合训练报告2600字(论文)】
- 2022湖南省郴州市中考物理真题试卷和答案
- 救护车使用培训课件
- 经典成语故事郑人买履
- 人血白蛋白介绍演示培训课件
评论
0/150
提交评论