版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省-北京师范大学东莞石竹附属学校2023-2024学年高考仿真卷数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为非零实数,且,则()A. B. C. D.2.已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为()A.2020 B.20l9 C.2018 D.20173.已知(),i为虚数单位,则()A. B.3 C.1 D.54.设集合,集合,则=()A. B. C. D.R5.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.6.若复数满足,则()A. B. C. D.7.已知复数满足,(为虚数单位),则()A. B. C. D.38.如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()A. B. C. D.9.已知,则,不可能满足的关系是()A. B. C. D.10.若的展开式中含有常数项,且的最小值为,则()A. B. C. D.11.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.12.在中,已知,,,为线段上的一点,且,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知内角,,的对边分别为,,.,,则_________.14.已知正实数满足,则的最小值为.15.已知向量,,若,则______.16.函数在区间上的值域为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)当时,求不等式的解集;(2)若,,证明:.18.(12分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.19.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.20.(12分)如图,在四棱锥中,,,.(1)证明:平面;(2)若,,为线段上一点,且,求直线与平面所成角的正弦值.21.(12分)如图,在直三棱柱中,,点P,Q分别为,的中点.求证:(1)PQ平面;(2)平面.22.(10分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中,,,.根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.①求关于的回归方程;②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.2、B【解析】
根据题意计算,,,计算,,,得到答案.【详解】是等差数列的前项和,若,故,,,,故,当时,,,,,当时,,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.3、C【解析】
利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.4、D【解析】试题分析:由题,,,选D考点:集合的运算5、A【解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.6、C【解析】
把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解.【详解】解:由,得,∴.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.7、A【解析】,故,故选A.8、A【解析】
根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【详解】如下图所示,平面,从而平面,易知与正方体的其余四个面所在平面均相交,∴,∵平面,平面,且与正方体的其余四个面所在平面均相交,∴,∴结合四个选项可知,只有正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.9、C【解析】
根据即可得出,,根据,,即可判断出结果.【详解】∵;∴,;∴,,故正确;,故C错误;∵,故D正确故C.【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题10、C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1.所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.11、D【解析】
根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.12、A【解析】
在中,设,,,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,,,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,,,,即,即,,,,,,,,即,又,,,则,所以,,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、、,为线段上的一点,则存在实数使得,,设,,则,,,,,消去得,,所以,,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【详解】由正弦定理得,,.故答案为:.【点睛】本题考查了正弦定理求角,三角恒等变换,属于基础题.14、4【解析】
由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.【点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.15、1【解析】
根据向量加法和减法的坐标运算,先分别求得与,再结合向量的模长公式即可求得的值.【详解】向量,则,则因为即,化简可得解得故答案为:【点睛】本题考查了向量坐标加法和减法的运算,向量模长的求法,属于基础题.16、【解析】
由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【详解】,,则,.故答案为:.【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见证明【解析】
(1)利用零点分段法讨论去掉绝对值求解;(2)利用绝对值不等式的性质进行证明.【详解】(1)解:当时,不等式可化为.当时,,,所以;当时,,.所以不等式的解集是.(2)证明:由,,得,,,又,所以,即.【点睛】本题主要考查含有绝对值不等式问题的求解,含有绝对值不等式的解法一般是使用零点分段讨论法.18、(1);(2)证明见解析【解析】
(1)利用零点分段法将表示为分段函数的形式,由此解不等式求得不等式的解集.(2)将不等式坐标因式分解,结合(1)的结论证得不等式成立.【详解】(1)解:,由,解得,故.(2)证明:因为,所以,,所以,所以.【点睛】本小题主要考查绝对值不等式的解法,考查不等式的证明,属于基础题.19、(1);(2).【解析】试题分析:(1)当时;(2)由等价于,解之得.试题解析:(1)当时,.解不等式,得.因此,的解集为.(2)当时,,当时等号成立,所以当时,等价于.①当时,①等价于,无解.当时,①等价于,解得.所以的取值范围是.考点:不等式选讲.20、(1)证明见解析(2)【解析】
(1)利用线段长度得到与间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以、、为轴、轴、轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又为坐标原点,分别以、、为轴、轴、轴建立空间直角坐标系,则,,,,,,,∵,∴,设是平面的一个法向量则,即,取得∴∴直线与平面所成的正弦值为【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值.21、(1)见解析(2)见解析【解析】
(1)取的中点D,连结,.根据线面平行的判定定理即得;(2)先证,,和都是平面内的直线且交于点,由(1)得,再结合线面垂直的判定定理即得.【详解】(1)取的中点D,连结,.在中,P,D分别为,中点,,且.在直三棱柱中,,.Q为棱的中点,,且.,.四边形为平行四边形,从而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D为中点,.由(1)知,,.又,平面,平面,平面.【点睛】本题考查线面平行的判定定理,以及线面垂直的判定定理,难度不大.22、(1)元.(2)①②万元【解析】
(1)每件产品的销售利润为,由已知可得的取值,由频率分布直方图可得劣质品、优等品、特优品的概率,从而可得的概率分布列,依期望公式计算出期望即为平均销售利润;(2)①对取自然对数,得,令,,,则,这就是线性回归方程,由所给公式数据计算出系数,得线性回归方程,从而可求得;②求出收益,可设换元后用导数求出最大值.【详解】解:(1)设每件产品的销售利润为,则的可能取值为,,.由频率分布直方图可得产品为劣质品、优等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《妈妈的爱》教案设计
- 人教版五年级数学上册【全册教案】
- 河流清淤疏浚服务合同
- 人教版二年级语文下册教学计划教案
- 物流配送中心管理准则
- 墙面施工合同:美术馆内部装修
- 网络综艺策划副导演聘用协议
- 宾馆水暖设施更新工程协议
- 工业用水施工合同
- 大同市工业档案管理准则
- 糖尿病健康知识宣教
- 八上历史全册知识梳理
- 2024年湖南湘潭市公安局招聘留置看护巡逻警务辅助人员28人历年高频难、易错点500题模拟试题附带答案详解
- 期中考试试题(1-4单元)(试题)-2024-2025学年二年级上册数学青岛版
- 2024-2030年中国电表行业发展分析及投资前景预测研究报告
- 2024秋期国家开放大学《政治学原理》一平台在线形考(形考任务一)试题及答案
- 技术创新课件教学课件
- 第四章 光现象章节练习2024-2025学年人教版八年级物理上册
- 2024北京朝阳区高三二模数学试题及答案
- 科学脊梁钱学森人物介绍
- Module 6 Unit 2 Happy Mid-Autumn Festival(教学设计)-2024-2025学年外研版(三起)英语四年级上册
评论
0/150
提交评论