版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届青海省黄南市高三冲刺模拟数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若的展开式中的系数为150,则()A.20 B.15 C.10 D.252.已知函数,,若成立,则的最小值是()A. B. C. D.3.设复数满足,则()A.1 B.-1 C. D.4.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1 B. C. D.5.已知等差数列的前项和为,且,则()A.45 B.42 C.25 D.366.已知实数x,y满足,则的最小值等于()A. B. C. D.7.已知集合,集合,则等于()A. B.C. D.8.设复数z=,则|z|=()A. B. C. D.9.已知非零向量、,若且,则向量在向量方向上的投影为()A. B. C. D.10.已知,复数,,且为实数,则()A. B. C.3 D.-311.设全集集合,则()A. B. C. D.12.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________.14.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.15.已知三棱锥中,,,,且二面角的大小为,则三棱锥外接球的表面积为__________.16.实数,满足,如果目标函数的最小值为,则的最小值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的单调区间;(2)若,证明.18.(12分)已知数列的通项,数列为等比数列,且,,成等差数列.(1)求数列的通项;(2)设,求数列的前项和.19.(12分)平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点.(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积.20.(12分)已知,求的最小值.21.(12分)已知函数.(1)求不等式的解集;(2)若存在实数,使得不等式成立,求实数的取值范围.22.(10分)已知正实数满足.(1)求的最小值.(2)证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.2、A【解析】分析:设,则,把用表示,然后令,由导数求得的最小值.详解:设,则,,,∴,令,则,,∴是上的增函数,又,∴当时,,当时,,即在上单调递减,在上单调递增,是极小值也是最小值,,∴的最小值是.故选A.点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.3、B【解析】
利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.4、C【解析】
根据程序图,当x<0时结束对x的计算,可得y值.【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【点睛】本题考查程序框图,是基础题.5、D【解析】
由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的前项和.6、D【解析】
设,,去绝对值,根据余弦函数的性质即可求出.【详解】因为实数,满足,设,,,恒成立,,故则的最小值等于.故选:.【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.7、B【解析】
求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.8、D【解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.9、D【解析】
设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解.【详解】,由得,整理得,,解得,因此,向量在向量方向上的投影为.故选:D.【点睛】本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题.10、B【解析】
把和代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值.【详解】因为为实数,所以,解得.【点睛】本题考查复数的概念,考查运算求解能力.11、A【解析】
先求出,再与集合N求交集.【详解】由已知,,又,所以.故选:A.【点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.12、A【解析】
联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值【详解】解:设圆柱底面圆的半径为,圆柱的高为,由题意知,解得.故答案为:3.【点睛】本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合方程的思想即可求出结果.14、1【解析】
由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值.【详解】的二项展开式的中,只有第5项的二项式系数最大,,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.15、【解析】
设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB的垂线,则垂线的交点为球心O,将的长度求出或用球半径表示,再利用余弦定理即可建立方程解得半径.【详解】设的中心为T,AB的中点为N,AC中点为M,分别过M,T做平面ABC,平面PAB的垂线,则垂线的交点为球心O,如图所示因为,,所以,,,又二面角的大小为,则,,所以,设外接球半径为R,则,,在中,由余弦定理,得,即,解得,故三棱锥外接球的表面积.故答案为:.【点睛】本题考查三棱锥外接球的表面积问题,解决此类问题一定要数形结合,建立关于球的半径的方程,本题计算量较大,是一道难题.16、【解析】
作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为.等价于点与原点连线的斜率,所以当点为点C时,取得最小值,最小值为,故答案为:.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递减区间为,,无单调递增区间(2)证明见解析【解析】
(1)求导,根据导数的正负判断单调性,(2)整理,化简为,令,求的单调性,以及,即证.【详解】解:(1)函数定义域为,则,令,,则,当,,单调递减;当,,单调递增;故,,,,故函数的单调递减区间为,,无单调递增区间.(2)证明,即为,因为,即证,令,则,令,则,当时,,所以在上单调递减,则,,则在上恒成立,所以在上单调递减,所以要证原不等式成立,只需证当时,,令,,,可知对于恒成立,即,即,故,即证,故原不等式得证.【点睛】本题考查利用导数研究函数的单调性,利用导数证明不等式,函数的最值问题,属于中档题.18、(1);(2).【解析】
(1)根据,,成等差数列以及为等比数列,通过直接对进行赋值计算出的首项和公比,即可求解出的通项公式;(2)的通项公式符合等差乘以等比的形式,采用错位相减法进行求和.【详解】(1)数列为等比数列,且,,成等差数列.设数列的公比为,,,解得(2),,,,.【点睛】本题考查等差、等比数列的综合以及错位相减法求和的应用,难度一般.判断是否适合使用错位相减法,可根据数列的通项公式是否符合等差乘以等比的形式来判断.19、(1).(2)【解析】
(1)根据题意代入公式化简即可得到.(2)联立极坐标方程通过极坐标的几何意义求解,再求点到直线的距离即可算出三角形面积.【详解】解:(1)曲线,即.∴.曲线的极坐标方程为.直线的极坐标方程为,即,∴直线的直角坐标方程为.(2)设,,∴,解得.又,∴(舍去).∴.点到直线的距离为,∴的面积为.【点睛】此题考查参数方程,极坐标,直角坐标之间相互转化,注意参数方程只能先转化为直角坐标再转化为极坐标,属于较易题目.20、【解析】
讨论和的情况,然后再分对称轴和区间之间的关系,最后求出最小值【详解】当时,,它在上是减函数故函数的最小值为当时,函数的图象思维对称轴方程为当时,,函数的最小值为当时,,函数的最小值为当时,,函数的最小值为综上,【点睛】本题主要考查了二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于中档题。21、(1);(2).【解析】
(1)将函数的解析式表示为分段函数,然后分、、三段求解不等式,综合可得出不等式的解集;(2)求出函数的最大值,由题意得出,解此不等式即可得出实数的取值范围.【详解】.(1)当时,由,解得,此时;当时,由,解得,此时;当时,由,解得,此时.综上所述,不等式的解集;(2)当时,函数单调递增,则;当时,函数单调递减,则,即;当时,函数单调递减,则.综上所述,函数的最大值为,由题知,,解得.因此,实数的取值范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年-2024年公司项目部负责人安全教育培训试题附答案【黄金题型】
- 立秋文化在新媒体的传播
- 《材料工程原理绪论》课件
- 《监督培训材料》课件
- 激光打标机打标软件与PLC通信稳定性的研究
- 部编版七年级历史下册期末复习专题课件2024版
- 云安全隐私保护机制-洞察分析
- 营养产业可持续发展-洞察分析
- 外观模式可维护性-洞察分析
- 稀有金属国际市场动态-洞察分析
- 【8地星球期末】安徽省合肥市包河区智育联盟校2023-2024学年八年级上学期期末地理试题(含解析)
- 2024-2025学年冀人版科学四年级上册期末测试卷(含答案)
- 【8物(科)期末】合肥市庐阳区2023-2024学年八年级上学期期末质量检测物理试卷
- 国家安全知识教育
- 2024-2030年中国停车场建设行业发展趋势投资策略研究报告
- 蓝军战略课件
- 物业管理重难点分析及解决措施
- 北京邮电大学《数据库系统》2022-2023学年第一学期期末试卷
- 湖北省黄冈市2023-2024学年高一上学期期末考试化学试题(含答案)
- 中国HDMI高清线行业市场动态分析及未来趋势研判报告
- 物流公司安全生产监督检查管理制度
评论
0/150
提交评论