课件2:勾股定理的应用_第1页
课件2:勾股定理的应用_第2页
课件2:勾股定理的应用_第3页
课件2:勾股定理的应用_第4页
课件2:勾股定理的应用_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

勾股定理的应用在同一平面内,两点之间,线段最短一、情景导入从行政楼A点走到教学楼B点怎样走最近?教学楼

行政楼BA你能说出这样走的理由吗?在同一平面内,

以小组为单位,研究蚂蚁在圆柱体的A点沿侧面爬行到B点的问题.二、合作探究之圆柱讨论:1、蚂蚁怎样沿圆柱体侧面从A点爬行到B点?

2、有最短路径吗?若有,哪条最短?你是怎样找到的?BA我要从A点沿侧面爬行到B点,怎么爬呢?大家快帮我想想呀!圆柱爬行路径:(1)(2)(3)(4)ABABABAB例题(圆柱体侧面爬行路径最短问题)例1:如图所示,有一个圆柱,它的高是12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面爬行到B点,求其爬行的最短路程是多少?例题解析C解:由题意得展开图,知AB即为最短路径,其中AC=12,BC=故,最短路径是15cm。转化BA例题变式方法总结:侧面展开图中两点之间的连线段最短。讨论:1、蚂蚁怎样沿正方体表面从A点爬行到G点?2、有最短路径吗?若有,那条最短?你是怎么确定呢?三、合作探究之正方体ABCDEFGH

以小组为单位,研究蚂蚁在正方体的A点沿表面爬行到B点的问题.表面正方体爬行路径ABFEHGABCDEFGH前(后)上(下)ABCDEFGHBCGFEHABCDEFGH右(左)上(下)前(后)右(左)BCAEFG例题变式:

(1)、如把正方体变成如左图的长方体,长方体底面长为2,宽为1,高为4,蚂蚁从A点沿长方体表面爬到E点有多少种爬行可能?那种爬行路径的距离最短?是多少?解:长方体侧面展开图一共有三种情况,如上图,其距离分别是:第一种:第二种:第三种:例题变式:DAGHFE241左(右)上(下)(1)BAGFHE241前(后)上(下)(2)ABCFGE412

前(后)右(左)(3)总结:四棱柱给出的长、宽、高三个数据,把较小的两个数据的和作为一条直角边的长,最大的数据作为另一条直角边的长,这时斜边的长即为最短距离。(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?做一做

李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?∴AD和AB垂直做一做

李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?小试牛刀

甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6km/h的速度向正东行走,1小时后乙出发,他以5km/h的速度向正北行走。上午10:00,甲、乙两人相距多远?解:如图:已知A是甲、乙的出发点,10:00甲到达B点,乙到达C点.则:AB=2×6=12(千米)AC=1×5=5(千米)在Rt△ABC中∴BC=13(千米)即甲乙两人相距13千米

例2:有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边壁的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒最长是多少米?解:图形可简化为左下图,设伸入油桶中的长度为x米,即AB=x米,而AC=2米,BC=1.5米,有故,最长是2.5+0.5=3(米)答:这根铁棒的最长3米,最短2米.故,最短是1.5+0.5=2(米)当最短时:四、(立体图形内部问题):ACB最短是多少米?

例3:如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长。已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长五、做一做解:设滑道AC的长度为xm,则AB的长度为xm,AE的长度为(x-1)m.在RT△ACE中,∠AEC=90°,由勾股定理得

AE2+CE2=AC2即(x+1)2+32=x2,解得x=5故滑道AC的长度为5m。当堂练习1.如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cmB.5cmC.6cmD.10cmB梯子的顶端沿墙下滑4m,梯子底端外移8m.解:在Rt△AOB中,在Rt△COD中,2.一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?3.我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?DABC解:设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺由勾股定理得,BC2+AC2=AB2即52+x2=(x+1)225+x2=x2+2x+1,2x=24,∴x=12,x+1=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论