版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西壮族自治区贵港市桂平市高三六校第一次联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是()A. B. C.16 D.322.已知,,且是的充分不必要条件,则的取值范围是()A. B. C. D.3.已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为()A. B. C.0 D.4.“”是“函数的图象关于直线对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有()A.60 B.192 C.240 D.4326.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A. B.4 C. D.167.已知正项等比数列中,存在两项,使得,,则的最小值是()A. B. C. D.8.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.9.设集合,,若,则的取值范围是()A. B. C. D.10.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.11.设,,是非零向量.若,则()A. B. C. D.12.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为()A.4π B.8π C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,双曲线的焦距为,若过右焦点且与轴垂直的直线与两条渐近线围成的三角形面积为,则双曲线的离心率为____________.14.如图,已知圆内接四边形ABCD,其中,,,,则__________.15.已知数列的各项均为正数,记为数列的前项和,若,,则______.16.已知x,y>0,且,则x+y的最小值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角所对的边分别为,已知,且.(I)求角的大小;(Ⅱ)若,求面积的取值范围.18.(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.(1)证明:数列是等差数列;(2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有.19.(12分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.(1)求椭圆的标准方程;(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.20.(12分)在中,角、、所对的边分别为、、,且.(1)求角的大小;(2)若,的面积为,求及的值.21.(12分)在平面四边形(图①)中,与均为直角三角形且有公共斜边,设,∠,∠,将沿折起,构成如图②所示的三棱锥,且使=.(1)求证:平面⊥平面;(2)求二面角的余弦值.22.(10分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.2、D【解析】
“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:可化简为,,所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.3、C【解析】
先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C【点睛】此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.4、A【解析】
先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件.故选:A【点睛】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.5、C【解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.故选:C.【点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.6、D【解析】
根据复数乘方公式:,直接求解即可.【详解】,.故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.7、C【解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.【详解】,,或(舍).,,.当,时;当,时;当,时,,所以最小值为.故选:C.【点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.8、B【解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.9、C【解析】
由得出,利用集合的包含关系可得出实数的取值范围.【详解】,且,,.因此,实数的取值范围是.故选:C.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.10、A【解析】
化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【点睛】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。11、D【解析】试题分析:由题意得:若,则;若,则由可知,,故也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.12、B【解析】
由三视图判断出原图,将几何体补形为长方体,由此计算出几何体外接球的直径,进而求得球的表面积.【详解】根据题意和三视图知几何体是一个底面为直角三角形的直三棱柱,底面直角三角形的斜边为2,侧棱长为2且与底面垂直,因为直三棱柱可以复原成一个长方体,该长方体外接球就是该三棱柱的外接球,长方体对角线就是外接球直径,则,那么.故选:B【点睛】本小题主要考查三视图还原原图,考查几何体外接球的有关计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用即可建立关于的方程.【详解】设双曲线右焦点为,过右焦点且与轴垂直的直线与两条渐近线分别交于两点,则,,由已知,,即,所以,离心率.故答案为:【点睛】本题考查求双曲线的离心率,做此类题的关键是建立的方程或不等式,是一道容易题.14、【解析】
由题意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【详解】由圆内接四边形的性质可得,.连接BD,在中,有.在中,.所以,则,所以.连接AC,同理可得,所以.所以.故答案为:【点睛】本题考查余弦定理解三角形,同角三角函数基本关系,意在考查方程思想,计算能力,属于中档题型,本题的关键是熟悉圆内接四边形的性质,对角互补.15、63【解析】
对进行化简,可得,再根据等比数列前项和公式进行求解即可【详解】由数列为首项为,公比的等比数列,所以63【点睛】本题考查等比数列基本量的求法,当处理复杂因式时,常用基本方法为:因式分解,约分。但解题本质还是围绕等差和等比的基本性质16、1【解析】
处理变形x+y=x()+y结合均值不等式求解最值.【详解】x,y>0,且,则x+y=x()+y1,当且仅当时取等号,此时x=4,y=2,取得最小值1.故答案为:1【点睛】此题考查利用均值不等式求解最值,关键在于熟练掌握均值不等式的适用条件,注意考虑等号成立的条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】
(I)根据,利用二倍角公式得到,再由辅助角公式得到,然后根据正弦函数的性质求解.(Ⅱ)根据(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【详解】(I)因为,所以,,,或,或,因为,所以所以;(Ⅱ)由余弦定理得:,所以,所以,当且仅当取等号,又因为,所以,所以【点睛】本题主要考查二倍角公式,辅助角公式以及余弦定理,还考查了运算求解的能力,属于中档题.18、(1)见解析(2)(3)见解析【解析】
(1)令可得,即.得到,再利用通项公式和前n项和的关系求解,(2)由(1)知,.设等比数列的公比为,所以,再根据恰为与的等比中项求解,(3)由(2)得到时,,,求得,再代入证明。【详解】(1)解:令可得,即.所以.时,可得,当时,所以.显然当时,满足上式.所以.,所以数列是等差数列,(2)由(1)知,.设等比数列的公比为,所以,恰为与的等比中项,所以,解得,所以(3)时,,,而时,,,所以当时,.当时,,∴对任意,都有,【点睛】本题主要考查数列的通项公式和前n项和的关系,等差数列,等比数列的定义和性质以及数列放缩的方法,还考查了转化化归的思想和运算求解的能力,属于难题,19、(1);(2)详见解析.【解析】试题分析:(1)利用题中条件先得出的值,然后利用条件,结合椭圆的对称性得到点的坐标,然后将点的坐标代入椭圆方程求出的值,从而确定椭圆的方程;(2)将条件得到直线与的斜率直线的关系(互为相反数),然后设直线的方程为,将此直线的方程与椭圆方程联立,求出点的坐标,注意到直线与的斜率之间的关系得到点的坐标,最后再用斜率公式证明直线的斜率为定值.(1),,又是等腰三角形,所以,把点代入椭圆方程,求得,所以椭圆方程为;(2)由题易得直线、斜率均存在,又,所以,设直线代入椭圆方程,化简得,其一解为,另一解为,可求,用代入得,,为定值.考点:1.椭圆的方程;2.直线与椭圆的位置关系;3.两点间连线的斜率20、(1)(2);【解析】
(1)由代入中计算即可;(2)由余弦定理可得,所以,由,变形即可得到答案.【详解】(1)因为,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【点睛】本题考查二倍角公式以及正余弦定理解三角形,考查学生的运算求解能力,是一道容易题.21、(1)证明见解析;(2)【解析】
(1)取AB的中点O,连接,证得,从而证得C′O⊥平面ABD,再结合面面垂直的判定定理,即可证得平面⊥平面;(2)以O为原点,AB,OC所在的直线为y轴,z轴,建立的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)取AB的中点O,连接,,在Rt△和Rt△ADB中,AB=2,则=DO=1,又C′D=,所以,即⊥OD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026浙江温州市瑞安市市政工程管理中心招聘临时人员1人笔试备考题库及答案解析
- 2026年春季沪教版一年级下册小学音乐教学计划含进度表
- 4.7.2 免疫与免疫规划(第一课时)教学设计-2025-2026学年人教版生物(2024)八年级上册
- 2026云南昆明巫家坝商业运营管理有限公司校园招聘8人笔试备考试题及答案解析
- 2026湖南怀化市中方县中方镇牌楼中学公益性岗位招聘1人笔试备考题库及答案解析
- 2026东莞农商银行总行岗位社会招聘笔试备考题库及答案解析
- 2026浙江台州湾新区招聘6人笔试备考题库及答案解析
- 绵阳市消防救援支队2026年(第一批)面向社会公开招录合同制政府专职消防员(73人)笔试备考题库及答案解析
- 2026安徽安庆迎江经济开发区管委会面向社会招聘人才3人笔试备考试题及答案解析
- 2026年郑州职业技术学院单招综合素质笔试模拟试题含详细答案解析
- 2025年淄博医院招聘考试笔试题及答案
- 药师处方审核中的常见错误及纠正
- 2025年高考化学试题(浙江卷) 含答案
- 血透室穿刺时误穿肱动脉处理流程
- 医院预防保健管理办法
- 2025年扬州市中考数学试题卷(含答案解析)
- 制造成熟度等级及评价准则(DB61-T 1222-2018)
- 断绝父母关系协议书
- GB/T 13077-2024铝合金无缝气瓶定期检验与评定
- 《公路工程质量检验评定标准》JTG F80∕1-2017宣贯材料
- (广播电视艺术学专业论文)从戏剧角度解读约瑟夫·寇德卡.pdf
评论
0/150
提交评论