新教材2023版高中数学第二章平面解析几何2.3圆及其方程2.3.1圆的标准方程课件新人教B版选择性必修第一册_第1页
新教材2023版高中数学第二章平面解析几何2.3圆及其方程2.3.1圆的标准方程课件新人教B版选择性必修第一册_第2页
新教材2023版高中数学第二章平面解析几何2.3圆及其方程2.3.1圆的标准方程课件新人教B版选择性必修第一册_第3页
新教材2023版高中数学第二章平面解析几何2.3圆及其方程2.3.1圆的标准方程课件新人教B版选择性必修第一册_第4页
新教材2023版高中数学第二章平面解析几何2.3圆及其方程2.3.1圆的标准方程课件新人教B版选择性必修第一册_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3.1圆的标准方程[课标解读]

回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程.新知初探·自主学习课堂探究·素养提升新知初探·自主学习教材要点知识点一圆的标准方程1.以C(a,b)为圆心,r(r>0)为半径的圆的标准方程为________________.2.以原点为圆心,r为半径的圆的标准方程为________.(x-a)2+(y-b)2=r2x2+y2=r2知识点二点与圆的位置关系设点P到圆心的距离为d,圆的半径为r,则点与圆的位置关系对应如下:位置关系点在圆外点在圆上点在圆内d与r的大小关系______________________d>rd=rd<r状元随笔若点P(x0,y0)在圆C:(x-a)2+(y-b)2=r2上,需要满足(x0-a)2+(y0-b)2=r2,那么P在圆C内和圆C外又满足怎样的关系?[提示]若点P在圆C内,则有(x0-a)2+(y0-b)2<r2.若点P在圆C外,则有(x0-a)2+(y0-b)2>r2.基础自测1.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)(

)A.是圆心

B.在圆上C.在圆内D.在圆外答案:C

答案:D

3.求以两点A(-3,-1)和B(5,5)为直径端点的圆的标准方程.

4.经过原点,圆心在x轴的负半轴上,半径为2的圆的方程是________.答案:(x+2)2+y2=4解析:圆心是(-2,0),半径是2,所以圆的方程是(x+2)2+y2=4.课堂探究·素养提升题型1直接法求圆的标准方程例1

(1)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为(

)A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=1答案:A

(2)已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的标准方程是(

)A.(x-2)2+(y+3)2=13B.(x+2)2+(y-3)2=13C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=52答案:A

状元随笔(1)设出圆心坐标,利用两点间的距离公式求圆心坐标,再写出圆的标准方程.(2)根据中点坐标公式求出直径两端点坐标,进而求出圆的半径,再写出圆的标准方程.方法归纳1.确定圆的标准方程只需确定圆心坐标和半径,因此用直接法求圆的标准方程时,一般先从确定圆的两个要素入手,即首先求出圆心坐标和半径,然后直接写出圆的标准方程.2.确定圆心和半径时,常用到中点坐标公式、两点间距离公式,有时还用到平面几何知识,如“弦的中垂线必过圆心”“过切点与切线垂直的直线必过圆心”等.跟踪训练1

以点A(-5,4)为圆心,且与x轴相切的圆的方程是(

)A.(x+5)2+(y-4)2=25B.(x-5)2+(y+4)2=16C.(x+5)2+(y-4)2=16D.(x-5)2+(y+4)2=25答案:C解析:因该圆与x轴相切,则圆的半径r等于圆心纵坐标的绝对值,所以圆的方程为(x+5)2+(y-4)2=16.状元随笔当圆与坐标轴相切时要特别注意圆心的坐标与圆的半径的关系.题型2待定系数法求圆的标准方程例2

求圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程.

状元随笔解答本题可以先根据所给条件确定圆心和半径,再写方程,也可以设出方程用待定系数法求解,也可以利用几何性质求出圆心和半径.方法归纳1.待定系数法求圆的标准方程的一般步骤设方程((x-a)2+(y-b)2=r2)→列方程组(由已知条件,建立关于a、b、r的方程组)→解方程组(解方程组,求出a、b、r)→得方程(将a、b、r代入所设方程,得所求圆的标准方程).2.充分利用圆的几何性质,可使问题计算简单.跟踪训练2

求圆心在x轴上,且过点A(5,2)和B(3,-2)的圆的标准方程.

(2)若P(x,y)是圆C(x-3)2+y2=4上任意一点,请求出P(x,y)到直线x-y+1=0的距离的最大值和最小值.

方法归纳1.形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x,y)到定点(a,b)的距离的平方的最值问题.2.求圆外一点到圆的最大距离和最小距离可采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可求得.3.求圆外一条直线到圆的最大距离和最小距离可采用几何法,先求出圆心到该直线的距离,再加上或减去圆的半径,即可求得.跟踪训练3

(1)已知圆(x-1)2+y2=1上的点到直线y=kx-2的距离的最小值为1,则实数k=________;

教材反思1.本节课的重点是会用定义推导圆的标准方程并掌握圆的标准方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论