概率论第一讲_第1页
概率论第一讲_第2页
概率论第一讲_第3页
概率论第一讲_第4页
概率论第一讲_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率论与数理统计课程介绍:48学时,共讲8章.1~5章是概率论,6~8章是数理统计本课程的平时成绩包括作业,测验和点名.平时成绩所占的比例在全校范围内统一规定.引言

1.决定性现象在一定条件下必然发生(出现)某一结果的现象称为决定性现象.

特点

在相同的条件下,重复进行实验或观察,它的结果总是确定不变的。随机现象——即在相同的条件下,重复进行观测或试验,它的结果未必是相同的。在一定的条件下,可能出现这样的结果,也可能出现那样的结果,而试验或观察前,不能预知确切的结果。随机现象的特点

虽然在个别试验中,其结果呈现出不确定性,但是人们经过长期实践并深入研究之后,发现在大量重复试验或观察下,这类现象的结果呈现出某种规律性——这种在大量重复试验或观察中,所呈现出的固有规律性称之为统计规律性概率论与数理统计正是研究随机现象的这种统计规律性的数学分支

下面我们就来开始这门课程的学习概率论与数理统计概率论与数理统计概率论与数理统计概率论是数学的一个分支,它研究随机现象的数量规律,概率论的应用几乎遍及所有的科学领域,例如天气预报、地震预报、产品的抽样调查,在通讯工程中概率论可用以提高信号的抗干扰性、分辨率等等.总之:

概率论与数理统计在自然科学和社会科学的很多领域都具有非常广泛的应用.我对此不再展开介绍了.先看一看概率论的有关应用下面我们看一个有趣的通俗文学故事:援引<<读者>>,2006年,第4期,第56页:理智避开德军潜艇.

1943年以前,大西洋上的英美运输船队常常受到德国潜艇的袭击.为此,一位美国海军将领专门请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律.-------遭袭的概率由原来的25%下降为1%.第一章古典概型与概率空间在考虑一个(未来)事件是否会发生的时候,人们常关心该事件发生的可能性的大小.就像用尺子测量物体的长度、我们用概率测量一个未来事件发生的可能性大小.将概率作用于被测事件就得到该事件发生的可能性大小的测量值.为了介绍概率,需要先介绍试验和事件.§1.1试验与事件1.试验我们把按照一定的想法去作的事情称为随机试验.随机试验的简称是

试验

(experiment).下面都是试验的例子.掷一个硬币,观察是否正面朝上,掷两枚骰子,观察掷出的点数之和,在一副扑克牌中随机抽取两张,观察是否得到数字相同的一对.在概率论的语言中,试验还是指对试验的一次观测或试验结果的测量过程.2.样本空间投掷一枚硬币,用表示硬币正面朝上,用表示硬币反面朝上,则试验有两个可能的结果:和

.我们称和是样本点,称样本点的集合为试验的样本空间.投掷一枚骰子,用1表示掷出点数1,用2表示掷出点数2,…,用6表示掷出点数6.试验的可能结果是1,2,3,4,5,6.我们称这6个数是试验的样本点.称样本点的集合

是试验的样本空间.为了叙述的方便和明确,下面把一个特定的试验称为试验S.样本点(samplepoint):称试验S的可能结果为样本点,用表示.样本空间(samplespace):称试验S的样本点构成的集合为样本空间,用表示.

于是

3.事件投掷一枚骰子的样本空间是A={3}表示掷出3点,则A是的子集.我们称A是事件.掷出3点,就称事件A发生,否则称事件A不发生.用集合B={2,4,6}表示掷出偶数点,B是的子集,我们也称B是事件.当掷出偶数点,称事件B发生,否则称事件B不发生.事件B发生和掷出偶数点是等价的.设是试验S的样本空间.当中只有有限个样本点时,称的子集为事件.当试验的样本点(试验结果)落在A中,称事件A发生,否则称A不发生.按照上述约定,子集符号表示A是事件.

通常用大写字母A,B,C,D等表示事件.用表示集合A的余集.则事件A发生和样本点是等价的,事件A不发生和样本点

是等价的.例1.将一枚硬币抛掷两次,则样本空间为事件A表示“两次出现的面不同”,可记作

A:“两次出现的面不同”或

A={两次出现的面不同}

用样本空间的子集可表达为A={(H,T),(T,H)}

={(H,H),(H,T),(T,H),(T,T)}H~headT~tail特殊的事件:必件然事:

在每次试验中必出现

中一个样本点,即在每次试验中

必发生,因此称

为必然事件;

不件可事能

:在每次试验中,所出现的样本点都不在中,即在每次试验中

都不发生,因此称

为不可能发生的事件。可以看出:样本空间是由试验S的可能结果构成的全集,样本点就是的元素,事件A就是的子集.4.事件与集合当A,B都是事件,则

都是事件.也就是说事件经过集合运算得到的结果还是事件.我们也用AB表示.当

时,也用A+B表示.5.事件的关系与运算事件的关系与运算

(1)若AB,则称事件B包含事件A,事件A包含于事件B,指的是事件A发生必然导致B发生(2)若AB,BA,即A=B,则称事件A与事件B相等。(3)事件AB称为事件A与事件B的并(或和)事件。——当且仅当A、B中至少有一个发生时,事件AB发生。“A、B中至少有一个发生时”,“A发生或B发生”与“事件AB发生”是等价的。类似地,称为n个事件A1,…,An的和事件。称为可列个事件A1,…,An,…的和事件。(4)事件AB称为事件A与事件B的交(或积)事件,也记作AB。——当且仅当A、B同时发生时,事件AB发生。“事件A和B同时发生”,“A和B都发生”与“事件AB发生”是等价的。称为可列个事件A1,…,An,…的积事件。类似地,称为n个事件A1,…,An的积事件。(5)事件AB称为事件A与事件B的差事件。——当且仅当A发生,B不发生时,事件AB发生。类似地,若n个事件A1,…,An中两两互不相容,则称这n个事件是互不相容的。若事件A1,…,An,…中任意两个事件是互不相容的,则称这可列无穷多个事件是互不相容的。(6)若AB=,称为事件A与事件B互不相容。(7)若AB=,

AB=,称事件A与事件B为对立事件或逆事件。——在每次试验中,事件A、B中必有一个发生,且仅有一个发生。(8)事件称为事件A的补事件。——当且仅当事件A不发生时,事件发生。事件的运算公式就是集合的运算公式,具有性质1,2,3,4,5(见书p4)

结合律

分配律

对偶公式交换律

对于一个具体事件,要学会用数学符号表示;反之,对于用数学符号表示的事件,要清楚其具体含义是什么.下面看一些例子,让我们做一做练习:

是A的对立事件,

={两件产品不都是合格品}也可叙述为:={两件产品中至少有一个是不合格品}A={两件产品都是合格品},

例2:从一批产品中任取两件,观察合格品的情况.记问:={两件产品中至少有一个是不合格品}它又可写为两个互不相容事件之和={两件产品中恰有一个是不合格品}{两件产品中都是不合格品}例3:从一批产品中任取两件,观察合格品的情况.记A={两件产品都是合格品},若记

Bi={取出的第

i

件是合格品},i=1,2={两件产品中至少有一个是不合格品}

A=B1B2

问如何用Bi表示A和?(1)

A发生,B与C不发生设A、B、C为三个事件,用A、B、C的运算关系表示下列各事件.或(2)

A与B都发生,而C不发生或

§1.2古典概率模型假定随机试验S有有限个可能的结果,并且假定从该试验的条件及实施方法上去分析,我们找不到任何理由认为其中某一结果出现的机会比另一结果出现的机会大或小,我们只好认为所有结果在试验中有同等可能的出现机会.23479108615

例如,一个袋子中装有10个大小、形状完全相同的球.将球编号为1-10.把球搅匀,蒙上眼睛,从中任取一球.因为抽取时这些球是完全平等的,我们没有理由认为10个球中的某一个会比另一个更容易取得.也就是说,10个球中的任一个被取出的机会是相等的,均为1/10.23479108615

我们用i表示取到i号球,i=1,2,…,10.

34791086152且每个样本点(或者说基本事件)出现的可能性相同.

={1,2,…,10},则该试验的样本空间如i=2古典概率模型设是试验S的样本空间.对于的事件A,我们用P(A)表示A发生的可能性的大小,称P(A)是事件A发生的概率,简称为A的概率.概率是介于0和1之间的数,描述事件发生的可能性的大小.按照以上原则,如果事件A,B发生的可能性相同,则有P(A)=P(B).如果事件A发生的可能性是B发生的可能性大2倍,则有P(A)=2P(B).用,分别表示事件A和样本空间中样本点的个数.定义2.1设试验S的样本空间是有限集合,.如果的每个样本点发生的可能性相同,则称

(2.1)

为试验S下A发生的概率,简称为事件A的概率.能够用定义2.1描述的模型称为古典概率模型,简称为古典概型.排列组合是计算古典概率的重要工具.基本计数原理1.加法原理设完成一件事有m种方式,第一种方式有n1种方法,第二种方式有n2种方法,…;第m种方式有nm种方法,无论通过哪种方法都可以完成这件事,则完成这件事总共有n1+n2+…+nm

种方法.基本计数原理则完成这件事共有种不同的方法.2.乘法原理设完成一件事有m个步骤,第一个步骤有n1种方法,第二个步骤有n2种方法,…;第m个步骤有nm种方法,必须通过每一步骤,才算完成这件事,从n个不同元素取k个(允许重复)(1kn)的不同排列总数为:例如:从装有4张卡片的盒中有放回地摸取3张3241n=4,k=3123第1张4123第2张4123第3张4共有4.4.4=43种可能取法n个不同元素分为k组,各组元素数目分别为r1,r2,…,rk的分法总数为r1个元素r2个元素rk个元素…n个元素因为例4在一袋中有10个相同的球,分别标有号码1,2,…,10。从中任取一个球,求此球的号码为偶数的概率。

解:令A={球的号码为偶数}例5在一袋中有10个相同的球,分别标有号码1,2,…,10。每次任取一个球,记录其号码后放回袋中,再任取下一个。这种取法叫做“有放回抽取”.今有放回抽取3个球,求这3个球的号码均为偶数的概率解:令A={3个球的号码均为偶数}

注意此处为有放回抽取

在一袋中有10个相同的球,分别标有号码

1,2,…,10。每次任取一个球,记录其号码后不放回袋中,再任取下一个。这种取法叫做“不放回抽取”。今不放回抽取3个球,求这3个球的号码均为偶数的概率。例6解:令A={3个球的号码均为偶数}注意此处为无放回抽取

例7在一袋中有10个相同的球,分别标有号码1,2,…,10。今任取两个球,求取得的第一个球号码为奇数,第二个球的号码为偶数的概率。解:设A=“取得的第一个球号码为奇数,第二个球的号码为偶数”注意:第一个球是奇数,且第二个球是偶数,故有顺序要求,要用排列去做例8设一批同类型的产品共有N件,其中次品有M件。今从中任取n(假定n

N-M)件,求次品恰有k件的概率(0

k

min(M,n))

解答如下:这是一种无放回抽样.解:令B={恰有k件次品},P(B)=?次品正品……M件次品N-M件正品古典概率的基本性质

设S是古典概型,其样本空间中样本点个数

A,A1,A2,…,An是试验S中事件,则有

①0≤P(A)≤1②P(

)=1,P(

)=0③若A1,A2,…,An是互不相容的事件,则有推论

例9设有n个球,每个球都以同样的概率1/N

落入到N个格子(N

n)的每一个格子,试求(1).某指定的n个格子中各有一球的概率.(2).有n个格子中各有一球的概率.

答案:(1)

(2)生日问题

一个50人的班级中,求至少有两个人生日相同的概率.(可参见p7例2.7)提示:A=(50人中至少有两个人生日相同)Ashortcu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论