新疆阿克苏地区阿瓦提县第四中学2024届数学高二第二学期期末经典模拟试题含解析_第1页
新疆阿克苏地区阿瓦提县第四中学2024届数学高二第二学期期末经典模拟试题含解析_第2页
新疆阿克苏地区阿瓦提县第四中学2024届数学高二第二学期期末经典模拟试题含解析_第3页
新疆阿克苏地区阿瓦提县第四中学2024届数学高二第二学期期末经典模拟试题含解析_第4页
新疆阿克苏地区阿瓦提县第四中学2024届数学高二第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆阿克苏地区阿瓦提县第四中学2024届数学高二第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数是定义在R上的奇函数,且当时,,则()A.2 B.4 C.-2 D.-42.已知正三棱锥的外接球的半径为,且满足则正三棱锥的体积为()A. B. C. D.3.已知函数,若,则()A.0 B.3 C.6 D.94.已知,若的必要条件是,则a,b之间的关系是()A. B. C. D.5.已知集合,,全集,则等于()A. B. C. D.6.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy7.独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是A.在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关B.在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关C.在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关D.在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关8.将3名教师,5名学生分成3个小组,分别安排到甲、乙、丙三地参加社会实践活动,每地至少去1名教师和1名学生,则不同的安排方法总数为()A.1800 B.1440 C.300 D.9009.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有()A.24种 B.28种 C.32种 D.36种10.函数在定义域内可导,若,且当时,,设,,,则()A. B. C. D.11.已知i是虚数单位,m,n∈R,且m+i=1+ni,则=()A.i B.1 C.-i D.-112.设数列的前项和为,若,且,则()A.2019 B. C.2020 D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的单调减区间是______.14.售后服务人员小张、小李、小王三人需要拜访三个客户完成售后服务,每人只拜访一个客户,设事件“三个人拜访的客户各不相同”,“小王独自去拜访一个客户”,则概率等于_________.15.已知命题,若命题是假命题,则实数的取值范围是________.16.要设计一个容积为的下端为圆柱形、上端为半球形的密闭储油罐,已知圆柱侧面的单位面积造价是下底面积的单位面积造价的一半,而顶部半球面的单位面积造价又是圆柱侧面的单位面积造价的一半,储油罐的下部圆柱的底面半径_______时,造价最低.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)毕业季有位好友欲合影留念,现排成一排,如果:(1)、两人不排在一起,有几种排法?(2)、两人必须排在一起,有几种排法?(3)不在排头,不在排尾,有几种排法?18.(12分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:不等式对于任意恒成立.(1)若命题为真命题,求实数的取值范围;(2)若命题为真,为假,求实数的取值范围.19.(12分)已知函数(且)的图象过点.(Ⅰ)求实数的值;(Ⅱ)若,对于恒成立,求实数的取值范围.20.(12分)设函数,(为常数),.曲线在点处的切线与轴平行(1)求的值;(2)求的单调区间和最小值;(3)若对任意恒成立,求实数的取值范围.21.(12分)已知函数,(1)求在区间上的极小值和极大值;(2)求在(为自然对数的底数)上的最大值.22.(10分)如图,在四棱锥P—ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=1,M为PD的中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)设直线AM与平面ABCD所成的角为α,二面角M—AC—B的大小为β,求sinα·cosβ的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

先求出的值,再由函数的奇偶性得出可得出结果.【题目详解】由题意可得,由于函数是定义在上的奇函数,所以,,故选C.【题目点拨】本题考查利用函数的奇偶性求值,求函数值时要结合自变量的取值选择合适的解析式来计算,考查计算能力,属于基础题.2、A【解题分析】

根据判断出为等边三角形的中心,由此求得正三棱锥的底面积和高,进而求得正三棱锥的体积.【题目详解】由于三棱锥是正三棱锥,顶点在底面的射影是底面中心.由可知,为等边三角形的中心,由于正三棱锥的外接球的半径为,故由正弦定理得,且正三棱锥的高为球的半径,故正三棱锥的体积为.所以本小题选A.【题目点拨】本小题主要考查正三棱锥的几何性质,考查向量加法运算,考查几何体外接球有关问题的求解,属于中档题.3、C【解题分析】

分别讨论当和时带入即可得出,从而得出【题目详解】当时(舍弃).当时,所以,所以选择C【题目点拨】本题主要考查了分段函数求值的问题,分段函数问题需根据函数分段情况进行讨论,属于基础题.4、A【解题分析】试题分析:不等式的解集为,不等式的解集为,根据题意可知是的子集,所以有,故选A.考点:绝对值不等式,充要条件的判断.5、D【解题分析】

先解出集合、,再利用补集和交集的定义可得出.【题目详解】因为,即或,所以,则,应选答案D.【题目点拨】本题考查集合的交集和补集的运算,同时也涉及了二次不等式与对数不等式的解法,考查运算求解能力,属于中等题.6、D【解题分析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.7、A【解题分析】

先找到的临界值,根据临界值表找到犯错误的概率,即对“运动员受伤与不做热身运动没有关系”可下结论。【题目详解】,因此,在犯错误的概率不超过的前提下,认为运动员受伤与不做热身运动有关,故选:A。【题目点拨】本题考查独立性检验,根据临界值表找出犯错误的概率是解这类问题的关键,考查运算求解能力,属于基础题。8、D【解题分析】

将三个教师全排列安排到三地,再利用分组、分配方法安排学生,可求出答案.【题目详解】先将3名教师安排到甲、乙、丙三地有种分法,然后安排5名学生,将5名学生可分为1,1,3三组,也可分为2,2,1三组,则安排到三地有种方法;根据分步乘法原理,可知不同的安排方法总数为种.故选D.【题目点拨】本题考查了分步乘法原理的应用,考查了分配问题,考查了计算能力,属于中档题.9、B【解题分析】试题分析:第一类:有一个人分到一本小说和一本诗集,这种情况下的分法有:先将一本小说和一本诗集分到一个人手上,有种分法,将剩余的本小说,本诗集分给剰余个同学,有种分法,那共有种;第二类:有一个人分到两本诗集,这种情况下的分法有:先两本诗集分到一个人手上,有种情况,将剩余的本小说分给剩余个人,只有一种分法,那共有:种,第三类:有一个人分到两本小说,这种情况的分法有:先将两本小说分到一个人手上,有种情况,再将剩余的两本诗集和一本小说分给剩余的个人,有种分法,那共有:种,综上所述:总共有:种分法,故选B.考点:1、分布计数乘法原理;2、分类计数加法原理.【方法点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.10、B【解题分析】

x∈(-∞,1)时,x-1<0,由(x-1)•f'(x)<0,知f'(x)>0,所以(-∞,1)上f(x)是增函数.∵f(x)=f(2-x),∴f(3)=f(2-3)=f(-1)所以f(-1)<(0)<,因此c<a<b.故选B.11、A【解题分析】

先根据复数相等得到的值,再利用复数的四则混合运算计算.【题目详解】因为,所以,则.故选A.【题目点拨】本题考查复数相等以及复数的四则混合运算,难度较易.对于复数的四则混合运算,分式类型的复数式子,采用分母实数化计算更加方便.12、D【解题分析】

用,代入已知等式,得,可以变形为:,说明是等差数列,故可以求出等差数列的通项公式,最后求出的值.【题目详解】因为,所以,所以数列是以为公差的等差数列,,所以等差数列的通项公式为,故本题选D.【题目点拨】本题考查了公式的应用,考查了等差数列的判定义、以及等差数列的通项公式.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:先求出函数的定义域,函数的导函数,令导函数小于0求出的范围,写成区间形式,可得到函数的单调减区间.详解:函数的定义域为,,令,得函数的单调递减区间是,故答案为.点睛:本题主要考查利用导数研究函数的单调性,属于简单题.利用导数求函数的单调区间的步骤为:求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间.14、【解题分析】

是条件概率,,利用公式求解.【题目详解】根据题意有事件“三个人拜访的客户各不相同”,则,所以.故答案为:【题目点拨】本题考查了条件概率的求法、组合的性质,属于基础题.15、【解题分析】

根据命题否定为真,结合二次函数图像列不等式,解得结果【题目详解】因为命题是假命题,所以为真所以【题目点拨】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.16、.【解题分析】

根据造价关系,得到总造价,再利用导数求得的最大值.【题目详解】设圆柱的高为,圆柱底面单位面积造价为,总造价为,因为储油罐容积为,所以,整理得:,所以,令,则,当得:,当得,所以当时,取最大值,即取得最大值.【题目点拨】本题考查导数解决实际问题,考查运算求解能力和建模能力,求解时要把相关的量设出,并利用函数与方程思想解决问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】

(1)利用插空法可求出排法种数;(2)利用捆绑法可求出排法种数;(3)分两种情况讨论:①若在排尾;②若不在排尾.分别求出每一种情况的排法种数,由加法原理计算可得出答案.【题目详解】(1)将、插入到其余人所形成的个空中,因此,排法种数为;(2)将、两人捆绑在一起看作一个复合元素和其他人去安排,因此,排法种数为;(3)分以下两种情况讨论:①若在排尾,则剩下的人全排列,故有种排法;②若不在排尾,则有个位置可选,有个位置可选,将剩下的人全排列,安排在其它个位置即可,此时,共有种排法.综上所述,共有种不同的排法种数.【题目点拨】本题考查了排列、组合的应用,同时也考查了插空法、捆绑法以及分类计数原理的应用,考查计算能力,属于中等题.18、(1).【解题分析】

(1)由命题得命题由命题为真,得为真命题或为真命题,列m的不等式求解即可;(2)由命题为真,为假判断均为真命题或均为假命题,分情况列出m的不等式组求解即可.【题目详解】,(1)由于为真命题,故为真命题或为真命题,从而有或,即.(2)由于为真命题,为假命题,所以均为真命题或均为假命题,从而有或,解得即:.【题目点拨】本题考查命题真假,注意命题p焦点在y轴上审题要注意,对于命题p,q的真假判断要准确.19、(Ⅰ)2;(Ⅱ).【解题分析】分析:(1)根据图像过点求得参数值;(2)原不等式等价于,)恒成立,根据单调性求得最值即可.详解:(Ⅰ),,或,,(舍去),.(Ⅱ),,,,则,,.则.点睛:函数题目经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).20、(1)k=1;(2)的单调递减区间为,单调递增区间为,最小值为;(3).【解题分析】

(1)首先求得导函数,然后利用导函数研究函数切线的性质得到关于k的方程,解方程即可求得k的值;(2)首先确定函数的定义域,然后结合导函数的符号与原函数的单调性求解函数的单调区间和函数的最值即可;(3)用问题等价于,据此求解实数a的取值范围即可.【题目详解】(1),,因为曲线在点处的切线与轴平行,所以,所以.(2),定义域为,令,得,当变化时,和的变化如下表:由上表可知,的单调递减区间为,单调递增区间为,最小值为.(3)若对任意成立,则,即,解得:.【题目点拨】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.21、(1)极小值为,极大值为.(2)答案不唯一,具体见解析【解题分析】

(1)对三次函数进行求导,解导数不等式,画出表格,从而得到极值;(2)由(1)知函数的性质,再对进行分类讨论,求在的性质,比较两段的最大值,进而得到函数的最大值.【题目详解】(1)当时,,令,解得或.当x变化时,,的变化情况如下表:x0-0+0-递减极小值递增极大值递减故当时,函数取得极小值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论