广东省肇庆市怀集中学2024届数学高二下期末联考试题含解析_第1页
广东省肇庆市怀集中学2024届数学高二下期末联考试题含解析_第2页
广东省肇庆市怀集中学2024届数学高二下期末联考试题含解析_第3页
广东省肇庆市怀集中学2024届数学高二下期末联考试题含解析_第4页
广东省肇庆市怀集中学2024届数学高二下期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省肇庆市怀集中学2024届数学高二下期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函数,,其中为自然对数的底数,若存在实数使得,则实数的值为()A. B. C. D.3.某几何体的三视图如图所示,当时,这个几何体的体积为()A.1 B. C. D.4.“,”是“双曲线的离心率为”的()A.充要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充分不必要条件5.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.6.在中,,若,则A. B. C. D.7.分配名工人去个不同的居民家里检查管道,要求名工人都分配出去,并且每名工人只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有()A.种 B.种 C.种 D.种8.已知复数(是虚数单位),则复数的共轭复数()A. B. C. D.9.已知函数是定义在上的偶函数,并且满足,当时,,则()A. B. C. D.10.若曲线:与曲线:(其中无理数…)存在公切线,则整数的最值情况为()A.最大值为2,没有最小值 B.最小值为2,没有最大值C.既没有最大值也没有最小值 D.最小值为1,最大值为211.如果,那么的值是()A. B. C. D.12.命题“,”的否定为()A. B.C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知,则的取值范围是________.14.某人从处向正东方向走千米,然后向南偏西的方向走3千米,此时他离点的距离为千米,那么___________千米.15.将一颗均匀的骰子连续抛掷2次,向上的点数依次记为,则“”的概率是____________.16.《中国诗词大会》节目组决定把《将进酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有____种.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某班要从6名男生4名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数结果用数字作答.(1)所安排的男生人数不少于女生人数;(2)男生甲必须是课代表,但不能担任语文课代表;(3)女生乙必须担任数学课代表,且男生甲必须担任课代表,但不能担任语文课代表.18.(12分)已知点为坐标原点椭圆的右焦点为,离心率为,点分别是椭圆的左顶点、上顶点,的边上的中线长为.(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点直线分别交直线于两点,求.19.(12分)已知函数,。(1)求的解析式;(2)求在处的切线方程.20.(12分)已知椭圆的左右焦点分别为,直线经过椭圆的右焦点与椭圆交于两点,且.(I)求直线的方程;(II)已知过右焦点的动直线与椭圆交于不同两点,是否存在轴上一定点,使?(为坐标原点)若存在,求出点的坐标;若不存在说明理由.21.(12分)已知抛物线的焦点为,过点且与轴不垂直的直线与抛物线交于点,且.(1)求抛物线的方程;(2)设直线与轴交于点,试探究:线段与的长度能否相等?如果相等,求直线的方程,如果不等,说明理由.22.(10分)为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:常

喝不常喝总

计肥

胖2不肥胖18总

计30已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为.(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?独立性检验临界值表:P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828参考公式:,其中n=a+b+c+d.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据复数的乘法运算进行化简,然后根据复数的几何意义,即可得到结论.详解:∵z=(﹣8+i)i=﹣8i+i2=﹣1﹣8i,对应的点的坐标为(﹣1,﹣8),位于第三象限,故选C.点睛:本题主要考查复数的几何意义,利用复数的运算先化简是解决本题的关键,属于基础题.2、C【解题分析】

先对函数求导,用导数的方法求最小值,再由基本不等式求出的最小值,结合题中条件,列出方程,即可求出结果.【题目详解】由得,由得;由得;因此,函数在上单调递减;在上单调递增;所以;又,当且仅当,即时,等号成立,故(当且仅当与同时取最小值时,等号成立)因为存在实数使得,所以,解得.故选C【题目点拨】本题主要考查导数的应用,以及由基本不等式求最小值,熟记利用导数求函数最值的方法,以及熟记基本不等式即可,属于常考题型.3、B【解题分析】

三视图复原几何体是长方体的一个角,设出棱长,利用勾股定理,基本不等式,求出最大值.【题目详解】解:如图所示,可知.设,则,消去得,所以,当且仅当时等号成立,此时,所以.故选:B.【题目点拨】本题考查三视图求体积,考查基本不等式求最值,是中档题.4、D【解题分析】

当时,计算可得离心率为,但是离心率为时,我们只能得到,故可得两者之间的条件关系.【题目详解】当时,双曲线化为标准方程是,其离心率是;但当双曲线的离心率为时,即的离心率为,则,得,所以不一定非要.故“”是“双曲线的离心率为”的充分不必要条件.故选D.【题目点拨】充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不必要条件.5、A【解题分析】

阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【题目详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【题目点拨】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.6、A【解题分析】

根据平面向量的线性运算法则,用、表示出即可.【题目详解】即:本题正确选项:【题目点拨】本题考查平面向量的加法、减法和数乘运算,属于基础题.7、C【解题分析】

根据题意,分析可得,必有2名水暖工去同一居民家检查;分两步进行,①先从4名水暖工中抽取2人,②再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,由分步计数原理,计算可得答案.【题目详解】解:根据题意,分配4名水暖工去3个不同的居民家里,要求4名水暖工都分配出去,且每个居民家都要有人去检查;

则必有2名水暖工去同一居民家检查,

即要先从4名水暖工中抽取2人,有种方法,

再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,有种情况,

由分步计数原理,可得共种不同分配方案,

故选:C.【题目点拨】本题考查排列、组合的综合应用,注意一般顺序是先分组(组合),再排列,属于中档题.8、B【解题分析】分析:利用复数代数形式的乘除运算化简求得z,再由共轭复数的概念得答案.详解:,.故选:B.点睛:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.9、D【解题分析】

先由题得出函数的周期,再将变量调节到范围内进行求解.【题目详解】因为,所令,则,所以可得,即,所以函数的周期为,则,又因为函数是定义在上的偶函数,且当时,所以故选D【题目点拨】本题考查函数的基本性质,包括周期性,奇偶性,解题的关键是先求出函数的周期,属于一般题.10、C【解题分析】分析:先根据公切线求出,再研究函数的最值得解.详解:当a≠0时,显然不满足题意.由得,由得.因为曲线:与曲线:(其中无理数…)存在公切线,设公切线与曲线切于点,与曲线切于点,则将代入得,由得,设当x<2时,,f(x)单调递减,当x>2时,,f(x)单调递增.或a<0.故答案为:C点睛:(1)本题主要考查导数的几何意义,考查利用导数求函数的最值,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是求出,再研究函数的最值得解.11、D【解题分析】

由诱导公式,可求得的值,再根据诱导公式化简即可.【题目详解】根据诱导公式,所以而所以选D【题目点拨】本题考查了诱导公式在三角函数式化简中的应用,属于基础题.12、A【解题分析】分析:全称命题的否定是特称命题,直接写出结果即可.详解:∵全称命题的否定是特称命题,∴命题“∀x∈[﹣2,+∞),x+3≥1”的否定是∃x0∈[﹣2,+∞),x0+3<1,故选:A.点睛:本题考查命题的否定,全称命题与特称命题的关系,基本知识的考查,注意命题的否定与否命题的区别.命题的否定是既否结论,又否条件;否命题是只否结论.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

可设所求cosαsinβ=x,与已知的等式sinαcosβ=相乘,利用二倍角的正弦函数公式的逆运算化简为sin2α•sin2β=2x后,根据三角函数的值域的范围得到关于x的不等式,求出解集即可得到cosαsinβ的范围【题目详解】设x=cosα•sinβ,sinα•cosβ•cosα•sinβ=x,即sin2α•sin2β=2x.由|sin2α•sin2β|≤1,得|2x|≤1,∴﹣≤x≤.故答案为:[﹣,].【题目点拨】考查学生灵活运用二倍角的三角函数公式化简求值,会根据三角函数的值域范围列出不等式.本题的突破点就是根据值域列不等式.14、6【解题分析】

根据题意作出图形,用正弦定理解出角,可得刚好构成直角三角形,可得答案.【题目详解】根据题意作出图形,如图.设向正东方向走千米到处,然后向南偏西的方向走3千米到处.即,由正弦定理得:.所以又,所以.所以,则.所以.则.故答案为:6【题目点拨】本题考查了正弦定理,考查了推理能力与计算能力,属于基础题.15、【解题分析】分析:骰子连续抛掷2次共有36种结果,满足的有6种详解:一颗均匀的骰子连续抛掷2次,向上的点数依次记为,则共有种结果,满足共有:(3,1),(4,1),(5,1),(6,1),(5,2),(6,2)6种则”的概率是点睛:古典概型概率要准确求出总的事件个数和基本事件个数,然后根据概率公式求解.16、1【解题分析】

根据题意,分2步分析:①将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,②再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),由分步计数原理计算可得答案.【题目详解】根据题意,分2步分析:①将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,共有种排法,②再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),有种排法,则后六场的排法有=1(种),故答案为:1.【题目点拨】(1)本题主要考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常见解法有:一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)1008.【解题分析】

(1)根据男生人数不少于女生人数,分三种情况讨论:选出5人中有5个男生,选出5人中有4名男生、1名女生,选出5人中有3名男生、2名女生,再全排列即可.(2)从剩余9人中选出4人,安排甲担任另外四科课代表,剩余四人全排列即可.(3)先安排甲担任另外三科的课代表,再从剩余8人中选择3人并全排列即可得解.【题目详解】(1)根据题意,分3种情况讨论:,选出的5人全部是男生,有种情况,,选出的5人中有4名男生、1名女生,有种情况,,选出的5人中有3名男生、2名女生,有种情况,则男生人数不少于女生人数的种数有种;(2)根据题意,分3步分析:,在其他9人中任选4人,有种选法,,由于甲不能担任语文课代表,则甲可以担任其他4科的课代表,有种选法,,将其他4人全排列,担任其他4科的课代表,有种情况,则有种安排方法;(3)根据题意,分3步分析:,由于女生乙必须担任数学课代表,甲不能担任语文课代表,则甲可以担任其他3科的课代表,有种选法,,在其他8人中任选3人,有种选法,,将其他3人全排列,担任其他3科的课代表,有种情况,则有种安排方法.【题目点拨】本题考查了排列组合问题的综合应用,分类分步计数原理的应用,属于基础题.18、(1);(2)0.【解题分析】

(1)首先根据题意列出方程组,再解方程即可.(2)首先设直线的方程为:,,,则,,联立方程,利用根系关系结合三点共线即可求出.【题目详解】(1)如图所示由题意得为直角三角形,且上的中线长为,所以.则,解得.所以椭圆的标准方程为:.(2)由题意,如图设直线的方程为:,,,则,,联立方程化简得.则.由三点共线易得,化简得,同理可得..【题目点拨】本题第一问考查椭圆的标准方程,第二问考查直线与椭圆的位置关系,同时考查学生的计算能力,属于中档题.19、(1);(2)【解题分析】分析:(1)求出函数的导数,利用已知条件列出方程,求解即可;(2)求出切线的斜率,然后求解切线方程.详解:(1)依题意有①②由①②解有所以的解析式是(2)在处的切线的斜率所以有即故所求切线的方程为.点睛:这个题目考查了利用导数求函数在某一点处的切线方程;步骤一般为:一,对函数求导,代入已知点得到在这一点处的斜率;二,求出这个点的横纵坐标;三,利用点斜式写出直线方程.20、(1)或;(2)【解题分析】

(I)解法一:直线方程与椭圆方程联立化为一元二次方程,利用弦长公式即可得出.解法二:利用焦半径公式可得.(II)II)设l2的方程为与椭圆联立:.假设存在点T(t,0)符合要求,设P(x1,y1),Q(x2,y2).∠OTP=∠OTQ,再利用根与系数的关系即可得出.【题目详解】解:(I)设的方程为与椭圆联立得直线经过椭圆内一点,故恒成立,设,则,,解得,的方程为或;解2:由焦半径公式有,解得.(II)设的方程为与椭圆联立:,由于过椭圆内一点,假设存在点符合要求,设,韦达定理:,点在直线上有,即,,解得.【题目点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论