广东省仲元中学2024届数学高二第二学期期末监测模拟试题含解析_第1页
广东省仲元中学2024届数学高二第二学期期末监测模拟试题含解析_第2页
广东省仲元中学2024届数学高二第二学期期末监测模拟试题含解析_第3页
广东省仲元中学2024届数学高二第二学期期末监测模拟试题含解析_第4页
广东省仲元中学2024届数学高二第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省仲元中学2024届数学高二第二学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.随机变量服从正态分布,则的最小值为()A. B. C. D.2.某校组织《最强大脑》赛,最终、两队讲入决赛,两队各由3名选手组成,每局两队各派一名洗手,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时队的得分高于队的得分的概率为()A. B. C. D.3.下列函数中,与函数的奇偶性相同,且在上单调性也相同的是()A. B. C. D.4.设函数为自然对数的底数)在上单调递增,则实数的取值范围为()A. B. C. D.5.在2018年初的高中教师信息技术培训中,经统计,哈尔滨市高中教师的培训成绩X~N(85,9),若已知,则从哈尔滨市高中教师中任选一位教师,他的培训成绩大于90的概率为()A.0.85 B.0.65 C.0.35 D.0.156.若函数在时取得极值,则()A. B. C. D.7.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作量与当天平均气温,并制作了对照表:气温(℃)181310-1用电量(度)24343864由表中数据得到线性回归方程y=-2x+a,当气温为A.68度 B.52度 C.12度 D.28度8.某班级在一次数学竞赛中为全班同学设置了一等奖、二等奖、三等奖以及参与奖,且奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元、参与奖2元,获奖人数的分配情况如图所示,则以下说法正确的是()A.参与奖总费用最高 B.三等奖的总费用是二等奖总费用的2倍C.购买奖品的费用的平均数为9.25元 D.购买奖品的费用的中位数为2元9.已知函数f(x)=13x3-12A.(0,1) B.(3,+∞) C.(0,2) D.(1,+∞)10.已知直线y=x+1与曲线y=A.1B.2C.-1D.-211.设是服从二项分布的随机变量,又,,则与的值分别为(

)A., B., C., D.,12.在直角坐标系中,一个质点从出发沿图中路线依次经过,,,,按此规律一直运动下去,则()A.1006 B.1007 C.1008 D.1009二、填空题:本题共4小题,每小题5分,共20分。13.下表提供了某学生做题数量x(道)与做题时间y(分钟)的几组对应数据:x(道)3456y(分钟)2.5t44.5根据上表提供的数据,得y关于x的线性回归方程为则表中t的值为_____.14.已知复数z=(m+1)+(m﹣2)i是纯虚数(i为虚数单位),则实数m的值为_______.15.某保险公司新开设了一项保险业务.规定该份保单任一年内如果事件发生,则该公司要赔偿元,假若在一年内发生的概率为,为保证公司收益不低于的,公司应要求该份保单的顾客缴纳的保险金最少为____________元.16.已知函数在时有极值,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)从某公司生产线生产的某种产品中抽取1000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:(1)求这1000件产品质量指标的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.(i)利用该正态分布,求;(ⅱ)已知每件该产品的生产成本为10元,每件合格品(质量指标值)的定价为16元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户48元.若该公司卖出100件这种产品,记表示这件产品的利润,求.附:,若,则.18.(12分)设函数在时取得极值.(1)求a的值;(2)求函数的单调区间.19.(12分)m为何值时,函数(1)在上有两个零点;(2)有两个零点且均比-1大.20.(12分)已知,求的值.21.(12分)2019年春节,“抢红包”成为社会热议的话题之一.某机构对春节期间用户利用手机“抢红包”的情况进行调查,如果一天内抢红包的总次数超过10次为“关注点高”,否则为“关注点低”,调查情况如下表所示:关注点高关注点低总计男性用户5女性用户78总计1016(1)把上表补充完整,并判断能否在犯错误的概率不超过0.05的前提下认为性别与关注点高低有关?(2)现要从上述男性用户中随机选出3名参加一项活动,以表示选中的男性用户中抢红包总次数超过10次的人数,求随机变量的分布列及数学期望.下面的临界值表供参考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828独立性检验统计量,其中.22.(10分)已知函数f(x)=e(Ⅰ)求函数f(x)极值;(Ⅱ)若对任意x>0,f(x)>12a

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

利用正态密度曲线的对称性得出,再将代数式与相乘,展开后可利用基本不等式求出的最小值.【题目详解】由于,由正态密度曲线的对称性可知,,所以,,即,,由基本不等式可得,当且仅当,即当时,等号成立,因此,的最小值为,故选D.【题目点拨】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.2、C【解题分析】

先将队得分高于队得分的情况列举出来,然后进行概率计算.【题目详解】比赛结束时队的得分高于队的得分可分为以下种情况:第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;第一局:队赢,第二局:队赢,第三局:队赢;则对应概率为:,故选:C.【题目点拨】本题考查独立事件的概率计算,难度较易.求解相应事件的概率,如果事件不符合特殊事件形式,可从“分类加法”的角度去看事件,然后再将结果相加.3、A【解题分析】

先分析的奇偶性以及在的单调性,然后再对每个选项进行分析.【题目详解】函数为偶函数,且在上为增函数,对于选项,函数为偶函数,在上为増函数,符合要求;对于选项,函数是偶函数,在上为减函数,不符合题意;对于选项,函数为奇函数,不符合题意;对于选项,函数为非奇非偶函数,不符合要求;只有选项符合要求,故选.【题目点拨】奇偶函数的判断:(满足定义域关于原点对称的情况下)若,则是奇函数;若,则是偶函数.4、D【解题分析】

根据单调性与导数的关系,有在上恒成立,将恒成立问题转化成最值问题,利用导数,研究的单调性,求出最小值,即可得到实数的取值范围。【题目详解】依题意得,在上恒成立,即在上恒成立,设,令,,,所以,,,故选D。【题目点拨】本题主要考查函数单调性与导数的关系,将函数在某区间单调转化为导数或者的恒成立问题,再将其转化为最值问题,是解决此类问题的常规思路。5、D【解题分析】

先求出,再求出培训成绩大于90的概率.【题目详解】因为培训成绩X~N(85,9),所以2×0.35=0.7,所以P(X>90)=,所以培训成绩大于90的概率为0.15.故答案为:D.【题目点拨】(1)本题主要考查正态分布,意在考查学生对该知识的掌握水平.(2)解答正态分布问题,不要死记硬背,要根据函数的图像和性质解答.6、D【解题分析】

对函数求导,根据函数在时取得极值,得到,即可求出结果.【题目详解】因为,所以,又函数在时取得极值,所以,解得.故选D【题目点拨】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.7、A【解题分析】由表格可知x=10,y=40,根据回归直线方程必过(x,y)得a8、D【解题分析】

先计算参与奖的百分比,分别计算各个奖励的数学期望,中位数,逐一判断每个选项得到答案.【题目详解】参与奖的百分比为:设人数为单位1一等奖费用:二等奖费用:三等奖费用:参与奖费用:购买奖品的费用的平均数为:参与奖的百分比为,故购买奖品的费用的中位数为2元故答案选D【题目点拨】本题考查了平均值,中位数的计算,意在考查学生的应用能力.9、B【解题分析】

由三次函数的性质,求出导函数,确定函数的极值,最后由极大值大于0,极小值小于0可得a的范围.【题目详解】f'(x)=x易知x<-a或x>1时f'(x)>0,当-a<x<1时,f'(x)<0,∴f(x)极大值=f(-a)=∴16a3故选B.【题目点拨】本题考查函数的零点,考查用导数研究函数的极值.求极值时要注意在极值点的两侧,f'(x)的符号要相反.10、B【解题分析】设切点P(x0,y∴x11、B【解题分析】分析:根据二项分布的期望和方差的计算公式,列出方程,即可求解答案.详解:由题意随机变量,又由,且,解得,故选B.点睛:本题主要考查了二项分布的期望与方差的计算公式的应用,其中熟记二项分布的数学期望和方差的计算公式是解答本题的关键,着重考查了推理与运算能力.12、D【解题分析】

分析:由题意得,即,观察前八项,得到数列的规律,求出即可.详解:由直角坐标系可知,,即,由此可知,数列中偶数项是从1开始逐渐递增的,且都等于所在的项数除以2,则,每四个数中有一个负数,且为每组的第三个数,每组的第一个数为其组数,每组的第一个数和第三个数是互为相反数,因为,则,,故选D.点睛:本题考查了归纳推理的问题,关键是找到规律,属于难题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】

现求出样本的中心点,再代入回归直线的方程,即可求得的值.【题目详解】由题意可得,因为对的回归直线方程是,所以,解得.【题目点拨】本题主要考查了回归直线方程的应用,其中解答的关键是利用回归直线方程恒过样本中心点,代入求解,着重考查了推理与计算能力,属于基础题.14、-1.【解题分析】分析:由复数的实部等于0且虚部不等于0列式求解m的值.详解:由复数是纯虚数,得,解得.故答案为-1.点睛:本题考查了复数的基本概念,考查了复数是纯虚数的条件.15、【解题分析】

用表示收益额,设顾客缴纳保险费为元,则的取值为和,由题意可计算出的期望.【题目详解】设顾客缴纳的保险金为元,用表示收益额,设顾客缴纳保险费为元,则的取值为和,,则,,的最小值为.故答案为:.【题目点拨】本题考查利用离散型随机变量的期望解决实际问题,解题关键是正确理解题意与期望的意义.属于基础题.16、【解题分析】

函数在时有极值,由,代入解出再检验即可。【题目详解】由题意知又在时有极值,所以或当时,与题意在时有极值矛盾,舍去故,故填【题目点拨】本题考查根据函数的极值点求参数,属于中档题,需要注意的是求解的结果一定要检验其是否满足题意。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)200,150;(2)(i);(ⅱ)280.【解题分析】

(1)直接利用样本平均数和样本方差公式计算得到答案.(2)(i)先判断,则(ⅱ)Ⅹ表示100件产品的正品数,题意得,计算,再计算【题目详解】(1)由题意得.∴,即样本平均数为200,样本方差为150.(2)(i)由(1)可知,,∴(ⅱ)设Ⅹ表示100件产品的正品数,题意得,∴,∴.【题目点拨】本题考查了数学期望,方差的计算,意在考查学生的计算能力和应用能力.18、(1)3;(2)的单调递增区间为;单调递减区间为(1,2).【解题分析】

(1)根据极值的定义,列出方程,求出的值并进行验证;(2)利用导数的正负求单调区间.【题目详解】(1),当时取得极值,则,即:,解得:,经检验,符合题意.(2)由(1)得:,∴,令解得:或,令0解得:,∴的单调递增区间为;单调递减区间为.【题目点拨】若一个函数存大两个或两个以上的单调递增区间或单调递减区间,则在书写时一般是用“,”隔开,或写一个“和”字,而不宜用符号“”连接.19、(1)(2)【解题分析】

(1)由二次方程根的分布知识求解.(2)由二次方程根的分布知识求解.【题目详解】(1)(2)设的两个零点分别为由题意:【题目点拨】本题考查二次方程根的分布:,方程的两根(1)两根都大于,(2)两根都小于,(3)一根大于,一根小于,(4)两根都在区间上,20、【解题分析】

先由等式求出的值,利用诱导公式对所求分式进行化简,代入的值可得出结果.【题目详解】因为,所以,所以,因此,.【题目点拨】本题考查利用诱导公式化简求值,对于化简求值类问题,首先要利用诱导公式将代数式进行化简,再结合同角三角函数的基本关系或代值计算,考查计算能力,属于基础题.21、(1)见解析,在犯错误

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论