




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省铜仁市铜仁伟才学校高二数学第二学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,甲工厂必须有班级要去,则不同的参观方案有()A.16种 B.18种 C.37种 D.48种2.函数(为自然对数的底数)在区间上的最大值是()A. B. C. D.3.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球半径相等的圆柱,与半球(如图一)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥(如图二),用任何一个平行与底面的平面去截它们时,可证得所截得的两个截面面积相等,由此证明该几何体与半球体积相等.现将椭圆绕轴旋转一周后得一橄榄状的几何体(如图三),类比上述方法,运用祖暅原理可求得其体积等于()A. B. C. D.4.设x,y满足约束条件,则目标函数的取值范围为()A. B. C. D.5.知是定义在上的偶函数,那么()A. B. C. D.6.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.7.阅读程序框图,运行相应的程序,则输出的的值为()A.72 B.90 C.101 D.1108.已知且,则的最大值为()A. B. C. D.9.已知直线与双曲线分别交于点,若两点在轴上的射影恰好是双曲线的两个焦点,则双曲线的离心率为()A. B. C.4 D.10.甲、乙、丙三人每人准备在3个旅游景点中各选一处去游玩,则在“至少有1个景点未被选择”的条件下,恰有2个景点未被选择的概率是()A.17 B.18 C.111.设函数,则函数的定义域为()A. B. C. D.12.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A为“4个人去的景点不相同”,事件B为“小赵独自去一个景点”,则P(A|B)=()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知四面体的棱平面,且,其余的棱长均为1,四面体以所在的直线为轴旋转弧度,且始终在水平放置的平面上方,如果将四面体在平面内正投影面积看成关于的函数,记为,则函数的取值范围为______.14.袋中有2个白球,1个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取1个记下颜色后放回,直到红球出现2次时停止,设停止时共取了次球,则_______.15.若实数x,y满足,则的最大值为__________;16.在△ABC中,AB=3,AC=2,∠BAC=120°,.若,则实数λ的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式对任意恒成立,求实数的取值范围.18.(12分)已知的图象上相邻两对称轴之间的距离为1.(1)求的单调递增区间;(2)若,且,求的值.19.(12分)已知函数f(x)=x+,且此函数的图象过点(1,5).(1)求实数m的值并判断f(x)的奇偶性;(2)判断函数f(x)在[2,+∞)上的单调性,证明你的结论.20.(12分)已知函数(其中),.(Ⅰ)若命题“”是真命题,求的取值范围;(Ⅱ)设命题:;命题:.若是真命题,求的取值范围.21.(12分)从1、2、3、4、5五个数字中任意取出无重复的3个数字.(I)可以组成多少个三位数?(II)可以组成多少个比300大的偶数?(III)从所组成的三位数中任取一个,求该数字是大于300的奇数的概率.22.(10分)若关于的不等式在实数范围内有解.(1)求实数的取值范围;(2)若实数的最大值为,且正实数满足,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据题意,用间接法:先计算3个班自由选择去何工厂的总数,再排除甲工厂无人去的情况,由分步计数原理可得其方案数目,由事件之间的关系,计算可得答案.【题目详解】根据题意,若不考虑限制条件,每个班级都有4种选择,共有4×4×4=64种情况,其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有3×3×3=27种方案;则符合条件的有64-27=37种,故选:C.【题目点拨】本题考查计数原理的运用,本题易错的方法是:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有3×4×4=48种方案;显然这种方法中有重复的计算;解题时特别要注意.2、D【解题分析】分析:先求导,再求函数在区间[-1,1]上的最大值.详解:由题得令因为.所以函数在区间[-1,1]上的最大值为e-1.故答案为D.点睛:(1)本题主要考查利用导数求函数的最值,意在考查学生对该知识的掌握水平.(2)设是定义在闭区间上的函数,在内有导数,可以这样求最值:①求出函数在内的可能极值点(即方程在内的根);②比较函数值,与,其中最大的一个为最大值,最小的一个为最小值.3、C【解题分析】
根据椭圆方程,构造一个底面半径为2,高为3的圆柱,通过计算可知高相等时截面面积相等,因而由祖暅原理可得橄榄球几何体的体积的一半等于圆柱的体积减去圆锥的体积.【题目详解】由椭圆方程,构造一个底面半径为2,高为3的圆柱在圆柱中挖去一个以圆柱下底面圆心为顶点、上底面为底面的圆锥当截面与底面距离为时,截圆锥得到的截面小圆半径为则,即所以截面面积为把代入椭圆方程,可求得所以橄榄球形状几何体的截面面积为由祖暅原理可得橄榄球几何体的体积为故选:C【题目点拨】本题考查了类比推理的综合应用,空间几何体体积的求法,属于中档题.4、A【解题分析】
作出可行域,将问题转化为可行域中的点与点的斜率问题,结合图形可得答案.【题目详解】画出满足条件得平面区域,如图所示:目标函数的几何意义为区域内的点与的斜率,过与时斜率最小,过与时斜率最大,故选:A.【题目点拨】本题考查了利用线性规划求分式型目标函数取值范围问题,解题关键是转化为斜率,难度较易.5、A【解题分析】分析:偶函数的定义域满足关于原点对称,且由此列方程解详解:是定义在上的偶函数,所以,解得,故选A点睛:偶函数的定义域满足关于原点对称,且,二次函数为偶函数对称轴为轴。6、D【解题分析】
由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【题目详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解题分析】输入参数第一次循环,,满足,继续循环第二次循环,,满足,继续循环第三次循环,,满足,继续循环第四次循环,,满足,继续循环第五次循环,,满足,继续循环第六次循环,,满足,继续循环第七次循环,,满足,继续循环第八次循环,,满足,继续循环第九次循环,,不满足,跳出循环,输出故选B点睛:此类问题的一般解法是严格按照程序框图设计的计算步骤逐步计算,逐次判断是否满足判断框内的条件,决定循环是否结束.要注意初始值的变化,分清计数变量与累加(乘)变量,掌握循环体等关键环节.8、A【解题分析】
根据绝对值三角不等式可知;根据可得,根据的范围可得,根据二次函数的性质可求得结果.【题目详解】由题意得:当,即时,即:,即的最大值为:本题正确选项:【题目点拨】本题考查函数最值的求解,难点在于对于绝对值的处理,关键是能够将函数放缩为关于的二次函数的形式,从而根据二次函数性质求解得到最值.9、A【解题分析】
由直线与双曲线联立,可知x=为其根,整理可得.【题目详解】解:由.,两点在轴上的射影恰好是双曲线的两个焦点,..故选:.【题目点拨】本题考查双曲线的离心率,双曲线的有关性质和双曲线定义的应用,属于中档题.10、A【解题分析】
设事件A为:至少有1个景点未被选择,事件B为:恰有2个景点未被选择,计算P(AB)和P(A),再利用条件概率公式得到答案.【题目详解】设事件A为:至少有1个景点未被选择,事件B为:恰有2个景点未被选择P(AB)=P(B故答案选A【题目点拨】本题考查了条件概率,意在考查学生对于条件概率的理解和计算.11、B【解题分析】
由根式内部的代数式大于等于0求得f(x)的定义域,再由在f(x)的定义域内求解x的范围得答案.【题目详解】由2﹣2x≥0,可得x≤1.由,得x≤2.∴函数f()的定义域为(﹣∞,2].故选:B.【题目点拨】本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.12、A【解题分析】
这是求小赵独自去一个景点的前提下,4
个人去的景点不相同的概率,求出相应基本事件的个数,按照公式计算,即可得出结论.【题目详解】小赵独自去一个景点共有4×3×3×3=108种情况,即n(B)=108,4个人去的景点不同的情况有种,即n(AB)=24,.故选:A【题目点拨】本题考查条件概率,考查学生的计算能力,确定基本事件的个数是关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
用极限法思考.当直线平面时,有最小值,当直线平面时,有最大值,这样就可以求出函数的取值范围.【题目详解】取的中点,连接,,,于是有平面,所以,,其余的棱长均为1,所以,到的距离为,当直线平面时,有最小值,最小值为:;当直线平面时,有最大值,最大值为.故答案为:【题目点拨】本题考查了棱锥的几何性质,考查了线面垂直的判定与应用,考查了空间想象能力.14、【解题分析】
由题意可知最后一次取到的是红球,前3次有1次取到红球,由古典概型求得概率。【题目详解】由题意可知最后一次取到的是红球,前3次有1次取到红球,所以,填。【题目点拨】求古典概型的概率,关键是正确求出基本事件总数和所求事件包含的基本事件总数.常常用到排列、组合的有关知识,计数时要正确分类,做到不重不漏.15、3【解题分析】
作出可行域,作出目标函数对应的直线,平移此直线可得最优解。【题目详解】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当直线过点时,取得最大值3。故答案为:3。【题目点拨】本题考查简单的线性规划,解题方法是作出可行域,作出目标函数对应的直线,平移此直线可得最优解。16、【解题分析】
根据题意画出图形,结合图形,用表示出,利,即可求出λ的值.【题目详解】如图所示,
中,,,解得,故答案为:【题目点拨】本题主要考查了向量的基本定理及向量数量积的运算性质的简单应用,属于基础试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】分析:(1)利用零点分类讨论法解不等式.(2)先利用分段函数求得,再解不等式得到实数的取值范围.详解:(1)当时,由得,故有或或∴或或,∴或,∴的解集为或.(2)当时∴由得∴∴的取值范围为.点睛:(1)本题主要考查绝对值不等式的解法,考查分段函数的最值的求法,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分类讨论的思想方法.(2)解题的关键是求的最小值,这里要利用分段函数的图像求解.18、(1),.(2)【解题分析】
(1)利用半角公式和辅助角公式可得,根据相邻两对称轴之间的距离为1求解周期T,即得,再令,求解即得单调递增区间;(2)代入,可得,转化,结合即得解.【题目详解】(1)解:.由题意,最小正周期,所以.所以.由,,得,.所以的单调递增区间为,.(2)因为,由(1)知,即.因为,所以.从而.所以.【题目点拨】本题考查了正弦型函数的综合应用,考查了学生综合分析、转化划归、数学运算的能力,属于中档题.19、(1)m=1,奇函数;(2)f(x)在[2,+∞)上单调递增,证明见解析.【解题分析】
试题分析:(1)函数图象过点(1,5)将此点代入函数关系式求出m的值即可,因为函数定义域关于原点对称,需要判断函数是否满足关系式或者.满足前者为偶函数,满足后者为奇函数,否则不具有奇偶性.此题也可以将看做与两个函数的和,由的奇偶性判断出的奇偶性.(2)利用函数单调性的定义式:区间上的时,的正负来确定函数在区间上的单调性.试题解析:(1)(1)∵f(x)过点(1,5),∴1+m=5⇒m=1.对于f(x)=x+,∵x≠2,∴f(x)的定义域为(-∞,2)∪(2,+∞),关于原点对称.∴f(-x)=-x+=-f(x).∴f(x)为奇函数.另解:,,定义域均与定义域相同,因为为奇函数,因此可以得出也为奇函数.(2)证明:设x1,x2∈[2,+∞)且x1<x2,则f(x1)-f(x2)=x1+-x2-=(x1-x2)+=.∵x1,x2∈[2,+∞)且x1<x2,∴x1-x2<2,x1x2>1,x1x2>2.∴f(x1)-f(x2)<2.∴f(x)在[2,+∞)上单调递增.考点:1、求函数表达式;2、证明函数的奇偶性;3、证明函数的单调性.20、(Ⅰ);(Ⅱ)【解题分析】试题分析:(1),即,,解得;(2)是真命题,则都是真命题.当时,,故需.或,故,.当时,,故需.,所以,.综上所述,.试题解析:(1)∵命题“”是真命题,即,∴,解得,∴的取值范围是;(2)∵是真命题,∴与都是真命题,当时,,又是真命题,则∵,∴,∴或∴,解得当时,∵是真命题,则,使得,而∵,∴,∴,解得求集合的交集可得.考点:命题真假性判断,含有逻辑联结词的命题.21、(1).(2)比三百大的数字有15个.(3).【解题分析】分析:(1)根据乘法计数原理可知可组成个个;(2)第一类:以2结尾百位有3种选择,十位有3种选择,则有9个,第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个;(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60684-3-282:2025 EN-FR Flexible insulating sleeving - Part 3: Specifications for individual types of sleeving - Sheet 282: Heat-shrinkable,polyolefin sleeving - Stress
- 2025年项目管理专业考试试卷及答案
- 2025年投资学基础知识考试试卷及答案
- 2025年儿童心理学与行为发展考试试题及答案
- 一级建造师题库及答案
- 全款房屋转让合同协议书
- 淄博楼市度白皮书71p
- 护理职称答辩要点解析
- 环保技术研发与转化有限合伙投资协议
- 高层住宅项目施工安全监管及责任划分协议
- 2025年粮油仓储管理员职业技能竞赛参考试题库(含答案)
- (广东二模)2025年广东省高三高考模拟测试(二)语文试卷(含答案解析)
- 2025-2030白酒行业市场发展现状及竞争形势与投资前景研究报告
- 成人肠造口护理-中华护理学会团体标准
- 2025年湖北省初中学业水平考试地理模拟卷(三)(学生版)
- 园林绿化安全培训课件
- 2025届江苏省南京市南京师范大学附属中学高三下学期“扬帆起航”数学试题
- DB14T 3231-2025安全风险分级管控和隐患排查治理双重预防机制建设通则
- 腔隙性脑梗塞护理常规
- 2025年入团积极分子培训考试题库及答案
- 人工智能在价格预测中的应用-深度研究
评论
0/150
提交评论