版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省青岛三中数学高二第二学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若为奇函数,且在上单调递增,则实数的值是()A. B. C. D.2.已知的展开式中含的项的系数为,则()A. B. C. D.3.某班级有6名同学去报名参加校学生会的4项社团活动。若甲,乙两位同学不参加同一社团,每个社团都有人参加,每个人只参加一个社团,则不同的报名方案数为A.2160 B.1320 C.2400 D.43204.学生会为了调查学生对年俄罗斯世界杯的关注是否与性别有关,抽样调查人,得到如下数据:不关注关注总计男生301545女生451055总计7525100根据表中数据,通过计算统计量,并参考以下临界数据:0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.845.0246.6357.87910.828若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过()A. B. C. D.5.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为()A. B.C. D.6.已知等差数列的前项和,且,则()A.4 B.7 C.14 D.7.甲、乙、丙、丁、戊5名同学报名参加社区服务活动,社区服务活动共有关爱老人、环境监测、教育咨询、交通宣传、文娱活动五个项目,每人限报其中一项,记事件为“5名同学所报项目各不相同”,事件为“只有甲同学一人报关爱老人项目”,则()A. B. C. D.8.设函数,集合,则图中的阴影部分表示的集合为()A. B.C. D.9.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为()A. B. C. D.10.在中,为锐角,,则的形状为()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.以上都不对11.若偶函数在上单调递减,,,,则、、满足()A. B. C. D.12.在中,若,则自然数的值是()A.7 B.8 C.9 D.10二、填空题:本题共4小题,每小题5分,共20分。13.若,,,且的最小值是___.14.根据如图所示的伪代码,最后输出的i的值为________.15.已知在平面内,点关于轴的对称点的坐标为.根据类比推理,在空间中,点关于轴的对称点的坐标为__________.16.已知X的分布列如图所示,则X-101P0.20.3a(1),(2),(3),其中正确的个数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)如果,求的取值范围.18.(12分)某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.(1)求一名顾客在一次摸奖活动中获得元的概率;(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.19.(12分)已知函数为实数).(1)讨论函数的单调性;(2)若在上恒成立,求的范围;20.(12分)将编号为1、2、3、4的四个小球随机的放入编号为1、2、3、4的四个纸箱中,每个纸箱有且只有一个小球,称此为一轮“放球”.设一轮“放球”后编号为的纸箱放入的小球编号为,定义吻合度误差为(1)写出吻合度误差的可能值集合;(2)假设等可能地为1,2,3,4的各种排列,求吻合度误差的分布列;(3)某人连续进行了四轮“放球”,若都满足,试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮“放球”相互独立);21.(12分)己知数列中,,其前项和满足:.(Ⅰ)求数列的通项公式;(Ⅱ)令,数列的前项和为,证明:对于任意的,都有.22.(10分)如图,正方体的所有棱长都为1,求点A到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
先根据奇函数性质确定取法,再根据单调性进行取舍,进而确定选项.【题目详解】因为为奇函数,所以因为,所以因此选B.【题目点拨】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.2、D【解题分析】
根据所给的二项式,利用二项展开式的通项公式写出第项,整理成最简形式,令的指数为,求得,再代入系数求出结果.【题目详解】二项展开式通项为,令,得,由题意得,解得.故选:D.【题目点拨】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.3、B【解题分析】
依题意,分和两组,先分组,后排列,最后求和即可.【题目详解】依题意,6名同学可分为两组,第一组为,利用间接法,有种,第二组为,利用间接法,有,所以分类计数原理,可得种,故选B.【题目点拨】本题主要考查了排列、组合及简单的计数原理,着重考查了分类讨论思想和转化思想的应用,以及推理与运算能力,其中解答中合理分类,做到先分组后排列的方式是解答的关键.4、A【解题分析】因为,所以若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过,故选A.【方法点睛】本题主要考查独立性检验的应用,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)5、B【解题分析】试题分析:函数,的图象上所有点向左平移个单位长度得,再把图象上各点的横坐标扩大到原来的2倍,得,选B.考点:三角函数图像变换6、B【解题分析】
由题意利用等差数列的定义、通项公式及前项和公式,求出首项和公差的值,可得结论.【题目详解】等差数列的前项和为,且,,.再根据,可得,,则,故选.【题目点拨】本题主要考查等差数列的定义、通项公式及前项和公式,属于基础题.7、A【解题分析】
由条件概率与独立事件可得:,P(AB)=,所以P(A|B)=,得解.【题目详解】由已知有事件概率为:,事件概率为:P(AB)=,所以P(A|B)=,故选:A.【题目点拨】本题考查条件概率的计算,条件概率的两种求法:(1)定义法:先求P(A)和P(AB),再由P(B|A)=即可;(2)基本事件法:借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)=,本题属于基础题.8、C【解题分析】
根据集合的定义可知为定义域,为值域;根据对数型复合函数定义域的要求可求得集合,结合对数型复合函数单调性可求得值域,即集合;根据图可知阴影部分表示,利用集合交并补运算可求得结果.【题目详解】的定义域为:,即:在上单调递增,在上单调递减在上单调递增,在上单调递减;当时,;当时,的值域为:图中阴影部分表示:又,本题正确选项:【题目点拨】本题考查集合基本运算中的交并补混合运算,关键是能够明确两个集合表示的含义分别为函数的定义域和值域,利用对数型复合函数的定义域要求和单调性可求得两个集合;涉及到图的读取等知识.9、C【解题分析】分析:设表示“第一次抛出的是奇数点”,表示“第二次抛出的是奇数点”,利用古典概型概率公式求出的值,由条件概率公式可得结果.详解:设表示“第一次抛出的是奇数点”,表示“第二次抛出的是奇数点”,,,在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为,故选C.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.10、A【解题分析】分析:由正弦定理化简并结合选项即可得到答案.详解:,则由正弦定理可得:,即,则当时,符合题意,故选:A.点睛:(1)三角形的形状按边分类主要有:等腰三角形,等边三角形等;按角分类主要有:直角三角形,锐角三角形,钝角三角形等.判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是不是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.(2)边角转化的工具主要是正弦定理和余弦定理.11、B【解题分析】
由偶函数的性质得出函数在上单调递增,并比较出三个正数、、的大小关系,利用函数在区间上的单调性可得出、、的大小关系.【题目详解】偶函数在上单调递减,函数在上单调递增,,,,,,故选:B.【题目点拨】本题考查利用函数的单调性比较函数值的大小关系,解题时要利用自变量的大小关系并结合函数的单调性来比较函数值的大小,考查分析问题和解决问题的能力,属于中等题.12、B【解题分析】
利用二项式的通项公式求出的表达式,最后根据,解方程即可求出自然数的值.【题目详解】二项式的通项公式为:,因此,,所以,解得.故选B.【题目点拨】本题考查了二项式定理的应用,考查了数学运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、9【解题分析】
根据基本不等式的性质,结合乘“1”法求出代数式的最小值即可.【题目详解】∵,,,,当且仅当时“=”成立,故答案为9.【题目点拨】本题考查了基本不等式的性质,考查转化思想,属于基础题.14、1【解题分析】分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件T=1+3+5+7时i的值.详解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加T=1+3+5+7,并输出满足条件时i值.∵T=1+3+5+7=16≥10,故输出的i值为7+2=1.故答案为1.点睛:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.15、【解题分析】
在空间中,点关于轴的对称点:轴不变,轴取相反数.【题目详解】在空间中,点关于轴的对称点:轴不变,轴取相反数.点关于轴的对称点的坐标为故答案为:【题目点拨】本题考查了空间的对称问题,意在考查学生的空间想象能力.16、1【解题分析】
由分布列先求出,再利用公式计算和即可.【题目详解】解:由题意知:,即;综上,故(1)正确,(2)(3)错误,正确的个数是1.故答案为:1.【题目点拨】本题考查了离散型随机变量的期望和方差,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;上是增函数;(2).【解题分析】分析:(1)求导得:,分类讨论可知当时,在上是增函数,当时,在上是减函数;在上是增函数.(2)由(1)可知,时,函数有最小值,据此可得关于实数a的不等式,且满足题意,据此可知.详解:(1)求导得:,当时,恒成立,所以在上是增函数,当时,令,则.①当时,,所以在上是减函数;②时,,所以在上是增函数.(2)由(1)可知,时,,,,解得,又由于,综上所述:.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k,把所求问题转化为求函数的最值问题.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.18、(1);(2)见解析【解题分析】
(1)根据古典概型概率计算公式可求得结果;(2)分别求出一名顾客摸球中奖元和不中奖的概率;确定所有可能的取值为:,,,,,分别计算每个取值对应的概率,从而得到分布列;利用数学期望计算公式求解期望即可.【题目详解】(1)记一名顾客摸球中奖元为事件从袋中摸出两只球共有:种取法;摸出的两只球均是红球共有:种取法(2)记一名顾客摸球中奖元为事件,不中奖为事件则:,由题意可知,所有可能的取值为:,,,,则;;;;随机变量的分布列为:【题目点拨】本题考查古典概型概率问题求解、离散型随机变量的分布列和数学期望的求解,关键是能够根据通过积事件的概率公式求解出每个随机变量的取值所对应的概率,从而可得分布列.19、(I)见解析;(Ⅱ)【解题分析】
(Ⅰ)求得函数的导数令,解得或,根据根的大小三种情况分类讨论,即可求解.(II)依题意有在上的恒成立,转化为在上的恒成立,设,,利用导数求得函数的单调性与最大值,即可求解.【题目详解】(Ⅰ)由题意,函数,则令,解得或,①当时,有,有,故在上单调递增;②当时,有,随的变化情况如下表:极大极小由上表可知在和上单调递增,在上单调递减;③同②当时,有,有在和上单调递增,在上单调递减;综上,当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.(II)依题意有在上的恒成立,即在上的恒成立,故在上的恒成立,设,,则有…(*)易得,令,有,,随的变化情况如下表:极大由上表可知,又由(*)式可知,故的范围为.【题目点拨】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.20、(1).(2)见解析(3)【解题分析】
试题分析:(1)根据题意知与的奇偶性相同,误差只能是偶数,由此写出的可能取值;(2)用列举法求出基本事件数,利用古典概型概率公式计算对应的概率值,写出随机变量的分布列;(3)利用互斥事件的概率公式计算,再利用对立事件的概率公式求解.试题解析:(1)由于在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年黄冈麻城市事业单位统一公开招聘工作人员166人笔试备考试题及答案解析
- 四川大学华西公共卫生学院华西第四医院 中毒科肾脏内科高压氧技师招聘笔试备考题库及答案解析
- 2026年南阳农业职业学院单招综合素质笔试参考题库含详细答案解析
- 2026贵州黔东南州特种设备检验所招聘1人笔试备考题库及答案解析
- 2026年西安航空职业技术学院招聘(34人)笔试备考题库及答案解析
- 2026中国武夷实业股份有限公司招聘笔试备考试题及答案解析
- 2026云南昆明市西山区图书馆招聘3人笔试备考试题及答案解析
- 2026上半年四川文理学院考核招聘博士人才15人笔试备考试题及答案解析
- 2026四川宜宾市高县国盛劳务派遣有限责任公司招聘劳务派遣人员1人笔试备考题库及答案解析
- 2026北京师范大学广州实验学校招聘临聘教师的笔试备考试题及答案解析
- 华为手机品牌营销策略研究毕业论文
- 2025年高等传热学试题及答案
- 2025年排版设计考试题库及答案
- 2024 四川省城镇管道燃气安全隐患分类和分级标准
- DB11∕T 637-2024 房屋结构综合安全性鉴定标准
- 2025届新疆乌鲁木齐市高三下学期三模英语试题(解析版)
- JJF 1183-2025 温度变送器校准规范
- 部编四年级道德与法治下册全册教案(含反思)
- 个人人身保险投保单
- 成本与管理会计学 课件 第7、8章 短期成本与经营决策、存货成本与存货管理
- YY/T 0313-2014医用高分子产品包装和制造商提供信息的要求
评论
0/150
提交评论