版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省莒县实验中学高二数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若;,.那么p是q的()A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件2.在二项式的展开式中,含的项的系数是().A. B. C. D.3.已知双曲线的一个焦点为,一条渐近线的斜率为,则该双曲线的方程为()A. B. C. D.4.某几何体的三视图如图所示,当时,这个几何体的体积为()A.1 B. C. D.5.某县城中学安排4位教师去3所不同的村小支教,每位教师只能支教一所村小,且每所村小有老师支教.甲老师主动要求去最偏远的村小A,则不同的安排有()A.6 B.12 C.18 D.246.已知f'x是函数fx的导函数,将y=fA. B.C. D.7.若函数是奇函数,则使得成立的的取值范围是()A. B.C. D.8.设M=a+1a-2(2<a<3),A.M>N B.M=N C.M<N D.不确定9.设函数的定义域为,若对于给定的正数,定义函数,则当函数,时,定积分的值为()A. B. C. D.10.设,则的值为()A.2 B.0 C. D.111.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A为“第一次取到的是奇数”,B为“第二次取到的是3的整数倍”,则()A. B. C. D.12.若函数的图象与直线相切,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线l过点(1,0)且垂直于𝑥轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.14.在极坐标系中,曲线和相交于点A,B,则线段AB的中点E到极点的距离是______.15.在中,是边上的中线,,若,则_____16.已知在定义域上满足恒成立,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线:的参数方程是,(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)分别写出的极坐标方程和的直角坐标方程;(2)若射线的极坐标方程,且分别交曲线、于,两点,求.18.(12分)在平面直角坐标系中,点到直线:的距离比到点的距离大2.(1)求点的轨迹的方程;(2)请指出曲线的对称性,顶点和范围,并运用其方程说明理由.19.(12分)某投资公司对以下两个项目进行前期市场调研:项目:通信设备.根据调研,投资到该项目上,所有可能结果为:获利、损失、不赔不赚,且这三种情况发生的概率分别为;项目:新能源汽车.根据调研,投资到该项目上,所有可能结果为:获利、亏损,且这两种情况发生的概率分别为.经测算,当投入两个项目的资金相等时,它们所获得的平均收益(即数学期望)也相等.(1)求的值;(2)若将万元全部投到其中的一个项目,请你从投资回报稳定性考虑,为投资公司选择一个合理的项目,并说明理由.20.(12分)目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响某校随机抽取200名学生,对学习成绩和学案使用程度进行了调查,统计数据如下表所示:善于使用学案不善于使用学案合计学习成绩优秀40学习成绩一般30合计200已知随机抽查这200名学生中的一名学生,抽到善于使用学案的学生概率是0.6.参考公式:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(I)完成列联表(不用写计算过程);(Ⅱ)试运用独立性检验的思想方法分析有多大的把握认为学生的学习成绩与对待学案的使用态度有关?21.(12分)已知,,.求与的夹角;若,,,,且与交于点,求.22.(10分)已知椭圆()的左右焦点为、,右顶点为,上顶点为,且.(1)求直线的方向方量;(2)若是椭圆上的任意一点,求的最大值;(3)过作的平行线交椭圆于、两点,若,求椭圆的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
转化,为,分析即得解【题目详解】若命题q为真,则,等价于因此p是q的充分不必要条件故选:C【题目点拨】本题考查了充分必要条件的判定,及存在性问题的转化,考查了学生逻辑推理,转化划归,数学运算的能力,属于基础题.2、C【解题分析】
利用二项展开式的通项公式求出第r+1项,令x的指数为4求得.【题目详解】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.3、C【解题分析】
根据双曲线一个焦点可以求出,再根据一条渐近线的斜率为,可求出的关系,最后联立,解方程求出,求出方程即可.【题目详解】因为双曲线一个焦点的坐标为,所以,一条渐近线的斜率为,所以有,而,所以,因此有.故选:C【题目点拨】本题考查了求双曲线方程,考查了双曲线的渐近线方程,考查了数学运算能力.4、B【解题分析】
三视图复原几何体是长方体的一个角,设出棱长,利用勾股定理,基本不等式,求出最大值.【题目详解】解:如图所示,可知.设,则,消去得,所以,当且仅当时等号成立,此时,所以.故选:B.【题目点拨】本题考查三视图求体积,考查基本不等式求最值,是中档题.5、B【解题分析】
按照村小A安排一个人和安排两个人两种情况分类讨论,按先分组后排序的方法,计算出不同的安排总数.【题目详解】村小A安排一人,则有;村小A若安排2人,则有.故共有.选B.【题目点拨】本小题主要考查分类加法计算原理,考查简单的排列组合计算问题,属于基础题.6、D【解题分析】
根据f'x的正负与f【题目详解】因为f'x是函数fx的导数,f'x>0时,函数A中,直线对应f'x,曲线对应B中,x轴上方曲线对应fx,x轴下方曲线对应fC中,x轴上方曲线对应f'x,x轴下方曲线对应D中,无论x轴上方曲线或x轴下方曲线,对应f'x时,fx都应该是单调函数,但图中是两个不单调的函数,显然故选D【题目点拨】本题主要考查函数与导函数图像之间的关系,熟记导函数与导数间的关系即可,属于常考题型.7、C【解题分析】的定义域为,它应该关于原点对称,所以,又时,,,为奇函数.又原不等式可以化为,所以,所以,选C.点睛:如果一个函数为奇函数或偶函数,那么它的定义域必须关于原点对称,我们可以利用这个性质去求奇函数或偶函数中的参数的值.8、A【解题分析】∵x2+116≥1∴N=log12(x2+又∵M=a+1a-2=a-2+1∴0<a-2<1.∴a-2+1a-2∴a+1a-2∴M>N.答案:A点睛:这个题目考查了比较函数值的大小关系;比较大小的常用方法有:做差,如果数值均为正,还可以考虑做商;还可以构造函数应用单调性比较大小;还可以放缩比较大小,常用的放缩方式有:不等式的应用.9、D【解题分析】分析:根据的定义求出的表达式,然后根据定积分的运算法则可得结论.详解:由题意可得,当时,,即.所以.故选D.点睛:解答本题时注意两点:一是根据题意得到函数的解析式是解题的关键;二是求定积分时要合理的运用定积分的运算性质,可使得计算简单易行.10、C【解题分析】
分别令和即可求得结果.【题目详解】令,可得:令,可得:故选【题目点拨】本题考查二项展开式系数和的相关计算,关键是采用赋值的方式构造出所求式子的形式.11、B【解题分析】
由条件概率的定义,分别计算即得解.【题目详解】由题意事件为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有个事件由条件概率的定义:故选:B【题目点拨】本题考查了条件概率的计算,考查了学生概念理解,分类讨论,数学运算的能力,属于中档题.12、B【解题分析】
设切点为,由可解得切点坐标与参数的值。【题目详解】设切点为,则由题意知即解得或者故选B【题目点拨】高考对导数几何意义的考查主要有以下几个命题角度:(1)已知切点求切线方程;(2)已知切线方程(或斜率)求切点或曲线方程;(3)已知曲线求切线倾斜角的取值范围.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:根据题干描述画出相应图形,分析可得抛物线经过点,将点坐标代入可求参数的值,进而可求焦点坐标.详细:由题意可得,点在抛物线上,将代入中,解得:,,由抛物线方程可得:,焦点坐标为.点睛:此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.14、2【解题分析】
将曲线方程化为直角坐标系下的方程,联立方程组,由此求得中点的坐标,再求出其到极点的距离.【题目详解】将曲线方程化为直角坐标方程可得将曲线方程化为直角坐标方程可得,联立两方程可得故可得中点坐标为,则其到坐标原点的距离即为所求,即.故答案为:2.【题目点拨】本题考查将极坐标方程化为普通方程,属基础题.15、【解题分析】
先设,根据余弦定理得到,,进而可判断出结果.【题目详解】设,则,在中,所以,,在中,,所以,,而,所以,三角形为等边三角形,所以,.【题目点拨】本题主要考查解三角形,熟记余弦定理即可,属于常考题型.16、2【解题分析】
求出原函数的导函数,可得时,不满足;时,在上单调递增,在上单调递减,求出函数的最大值,转化为最大值小于等于,再由导数求解值.【题目详解】,,若,则,函数在上为增函数,若,由,得,在上单调递增,在上单调递减,,由,得,令,则,当时,,当时,,在上单调递减,在上单调递增,又,只有当时,有,.故答案为:2【题目点拨】本题考查了导数在研究不等式恒成立问题,考查了转化与化归、分类讨论的思想,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1):,:;(2).【解题分析】试题分析:(1)首先写出的直角坐标方程,再根据互化公式写出极坐标方程,和的直角坐标方程,互化公式为;(2)根据图象分析出.试题解析:(1)将参数方程化为普通方程为,即,∴的极坐标方程为.将极坐标方程化为直角坐标方程为.(2)将代入整理得,解得,即.∵曲线是圆心在原点,半径为1的圆,∴射线与相交,即,即.故.18、(1);(2)对称性:曲线关于轴对称;顶点:;范围:曲线在直线右侧,且右上方和右下方无限延伸.理由见解析【解题分析】
(1)设,根据题意列出等量关系,化简整理,即可得出结果;(2)根据由抛物线向右平移一个单位得到,结合抛物线的性质,即可得出结果.【题目详解】(1)由题意可得:动点到直线的距离与到的距离相等,设,则,化简整理,可得,所以点的轨迹的方程为;(2)由(1)得的方程为;即由抛物线向右平移一个单位得到;所以曲线也关于轴对称,顶点为,范围为,.【题目点拨】本题主要考查求轨迹方程,以及轨迹的性质,熟记轨迹方程的求法,以及抛物线的性质即可,属于常考题型.19、(1),,;(2)从风险控制角度,建议该投资公司选择项目.【解题分析】
(1)根据概率和为1列方程求得的值,再利用分布列和数学期望列方程组求得、的值;(2)计算均值与方差,比较即可得出结论.【题目详解】(1)依题意,,,设投入到项目的资金都为万元,变量和分别表示投资项目和所获得的利润,则和的分布列分别为由分布列得,,因为所以,即,又,解得,;,,(2)当投入万元资金时,由(1)知,所以,,,因为,说明虽然项目和项目的平均收益相等,但项目更稳妥,所以,从风险控制角度,建议该投资公司选择项目.【题目点拨】本题主要考查了离散型随机变量的分布列与数学期望和方差的计算问题,是中档题.20、(1)见详解(2)有99.9%的把握认为学生的学习成绩与对待学案的使用态度有关.【解题分析】
(1)由已知数据列列联表,
(2)由公式得:,结合参考数据下结论即可.【题目详解】(1)列联表:善于使用学案不善于使用学案合计学习成绩优秀405090学习成绩一般8030110合计12080200(2)由公式得:,故有99.9%的把握认为学生的学习成绩与对待学案的使用态度有关.【题目点拨】本题主要考查了列联表及的运算及用独立性检验的思想方法分析,属于中档题.21、;.【解题分析】
化简得到,再利用夹角公式得到答案.,根据向量关系化简得到,再平方得到得到答案.【题目详解】,.又,,,..又,.,,,,.【题目点拨】本题考查了向量的计算,将表示出来是解题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度矿业权抵押担保项目合同样本3篇
- 2024经七路施工项目廉洁保障合同版B版
- 二零二五年度厂房装修安全风险评估合同3篇
- 2025年度高校文印服务外包合同3篇
- 二零二五年度园林景观装修合同范本2篇
- 2024版影视融资中介协议模板版B版
- 简易劳务派遣合同范本
- 二零二五年度icp许可证办理与互联网企业合规性审查与法律支持合同3篇
- 二零二五版二手车按揭转让合同范本3篇
- 二零二五版建筑材料租赁与合同变更合同3篇
- 人教版(2025新版)七年级下册英语:寒假课内预习重点知识默写练习
- 【公开课】同一直线上二力的合成+课件+2024-2025学年+人教版(2024)初中物理八年级下册+
- 高职组全国职业院校技能大赛(婴幼儿照护赛项)备赛试题库(含答案)
- 2024年公安部直属事业单位招聘笔试参考题库附带答案详解
- NB-T 47013.15-2021 承压设备无损检测 第15部分:相控阵超声检测
- SJG 05-2020 基坑支护技术标准-高清现行
- 汽车维修价格表
- 司炉岗位应急处置卡(燃气)参考
- 10KV供配电工程施工组织设计
- 终端拦截攻略
- 药物外渗处理及预防【病房护士安全警示教育培训课件】--ppt课件
评论
0/150
提交评论