版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省襄阳市四校2024届数学高二第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种 B.960种 C.720种 D.480种2.从分别标有1,2,…,9的9张卡片中有放回地随机抽取5次,每次抽取1张.则恰好有2次抽到奇数的概率是()A. B.C. D.3.有一散点图如图所示,在5个数据中去掉(3,10)后,下列说法正确的是()A.残差平方和变小 B.方差变大C.相关指数变小 D.解释变量与预报变量的相关性变弱4.某几何体的三视图如图所示,则该几何体的体积为()A. B. C.3 D.5.抛物线的焦点到双曲线的渐近线的距离为()A. B. C.1 D.6.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.7.已知函数,则此函数的导函数A. B.C. D.8.若函数f(x)=(a>0且a≠1)在(-∞,+∞)上既是奇函数又是增函数,则g(x)=的图象是()A. B. C. D.9.已知双曲线:1,左右焦点分别为,,过的直线交双曲线左支于,两点,则的最小值为()A. B.11 C.12 D.1610.在△ABC中,,,,则角B的大小为()A. B. C. D.或11.利用独立性检验的方法调查高中性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用2×2列联表,由计算可得K2≈7.245,参照下表:得到的正确结论是()0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.有99%以上的把握认为“爱好该项运动与性别无关”B.有99%以上的把握认为“爱好该项运动与性别有关”、C.在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”12.函数的极大值为()A.3 B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足不等式组且的最大值为,则=_____.14.设函数,若是的极大值点,则a取值范围为_______________.15.的化简结果为____________16.函数在点处切线方程为,则=______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一只口袋中装有形状、大小都相同的10个小球,其中有红球2个,黑球3个,白球5个.从中1次随机摸出2个球,求2个球颜色相同的概率;从中1次随机摸出3个球,记白球的个数为X,求随机变量X的概率分布和数学期望;每次从袋中随机摸出1个球,记下颜色后放回,连续取3次,求取到红球的次数大于取到白球的次数的概率.18.(12分)某电视台举办闯关活动,甲、乙两人分别独立参加该活动,每次闯关,甲成功的概率为,乙成功的概率为.(1)甲参加了次闯关,求至少有次闯关成功的概率;(2)若甲、乙两人各进行次闯关,记两人闯关成功的总次数为,求的分布列及数学期望.19.(12分)某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程的行业标准,予以地方财政补贴.其补贴标准如下表:2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程,得到频率分布直方图如图所示.用样本估计总体,频率估计概率,解决如下问题:(1)求该市纯电动汽车2017年地方财政补贴的均值;(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:(同一组数据用该区间的中点值作代表)2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台;交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.该企业现有两种购置方案:方案一:购买100台直流充电桩和900台交流充电桩;方案二:购买200台直流充电桩和400台交流充电桩.假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润日收入日维护费用)20.(12分)已知曲线的参数方程为(为参数).以轴正半轴为极轴,以坐标原点为极点建立极坐标系,点的极坐标为,过点的直线与曲线相交于,两点.(1)若直线的斜率,求直线的极坐标方程和曲线的普通方程;(2)求的值.21.(12分)已知函数,.(Ⅰ)当时,求函数在点处的切线方程;(Ⅱ)当时,讨论函数的零点个数.22.(10分)设函数f(x)=x2+bln(x+1),其中b≠1.(1)若b=﹣12,求f(x)在[1,3]的最小值;(2)如果f(x)在定义域内既有极大值又有极小值,求实数b的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B.2、B【解题分析】
先求出每次抽到奇数的概率,再利用n次独立重复试验中恰好发生k的概率计算公式求出结果.【题目详解】每次抽到奇数的概率都相等,为,故恰好有2次抽到奇数的概率是••,故选:B.【题目点拨】本题主要考查n次独立重复试验中恰好发生k的概率计算公式的应用,属于基础题.3、A【解题分析】
由散点图可知,去掉后,与的线性相关性加强,由相关系数,相关指数及残差平方和与相关性的关系得出选项.【题目详解】由散点图可知,去掉后,与的线性相关性加强,且为正相关,所以变大,变大,残差平方和变小,故选A.【题目点拨】该题考查的是有关线性相关性强弱的问题,涉及到的知识点有相关系数,相关指数,以及残差平方和与相关性的关系,属于简单题目.4、D【解题分析】分析:作出三视图的直观图,然后根据组合体计算体积即可.详解:如图所示:由一个三棱柱截取G-DEF三棱锥后所剩下的图形,故该几何体的体积为:,故答案为选D.点睛:考查三视图还原为直观图后求解体积的计算,对直观图的准确还原是解题关键,属于中档题.5、B【解题分析】抛物线的焦点为:,双曲线的渐近线为:.点到渐近线的距离为:.故选B.6、D【解题分析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.7、D【解题分析】分析:根据对应函数的求导法则得到结果即可.详解:函数,故答案为:D.点睛:这个题目考查了具体函数的求导计算,注意计算的准确性,属于基础题目.8、C【解题分析】本题考查指数型函数的奇偶性,单调性;对数函数的图像及图像的平移变换.因为是奇函数,所以恒成立,整理得:恒成立,所以则又函数在R上是增函数,所以于是函数的图像是由函数性质平移1个单位得到.故选C9、B【解题分析】
根据双曲线的定义,得到,再根据对称性得到最小值,从而得到的最小值.【题目详解】根据双曲线的标准方程,得到,根据双曲线的定义可得,,所以得到,根据对称性可得当为双曲线的通径时,最小.此时,所以的最小值为.故选:B.【题目点拨】本题考查双曲线的定义求线段和的最小值,双曲线的通径,考查化归与转化思想,属于中档题.10、A【解题分析】
首先根据三角形内角和为,即可算出角的正弦、余弦值,再根据正弦定理即可算出角B【题目详解】在△ABC中有,所以,所以,又因为,所以,所以,因为,,所以由正弦定理得,因为,所以。所以选择A【题目点拨】本题主要考查了解三角形的问题,在解决此类问题时常用到:1、三角形的内角和为。2、正弦定理。3、余弦定理等。属于中等题。11、B【解题分析】
由,结合临界值表,即可直接得出结果.【题目详解】由,可得有99%以上的把握认为“爱好该项运动与性别有关”.故选B【题目点拨】本题主要考查独立性检验,会对照临界值表,分析随机变量的观测值即可,属于基础题型.12、B【解题分析】
求得函数的导数,得出函数的单调性,再根据集合的定义,即可求解.【题目详解】由题意,函数,则,令,即,解得或,令,即,解得,即函数在上函数单调递增,在上函数单调递减,所以当时,函数取得极大值,极大值,故选B.【题目点拨】本题主要考查了利用导数研究函数的单调性,以及求解函数的极值问题,其中解答中熟记导数与原函数的单调性之间的关系,以及极值的概念是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】作出可行域,目标函数可变为,令,作出,由平移可知直线过时取最大值,则.则.故本题应填.14、【解题分析】试题分析:的定义域为,由,得,所以.①若,由,得,当时,,此时单调递增,当时,,此时单调递减,所以是的极大值点;②若,由,得或.因为是的极大值点,所以,解得,综合①②:的取值范围是,故答案为.考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值.15、18【解题分析】
由指数幂的运算与对数运算法则,即可求出结果.【题目详解】因为.故答案为18【题目点拨】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.16、4【解题分析】分析:因为在点处的切线方程,所以,由此能求出.详解:因为在点处切线方程为,,
所以从而.
即答案为4.点睛:本题考查利用导数研究曲线上某点处的切线方程,解题时要认真审题,仔细解答,注意合理地进行等价转化.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析;(3).【解题分析】
利用互斥事件的概率求和公式计算即可;由题意知X的可能取值,计算所求的概率值,写出X的概率分布,求出数学期望值;由题意知事件包含一红两黑和两红一黑,两红一白,求出对应的概率值.【题目详解】解:从袋中1次随机摸出2个球,则2个球颜色相同的概率为;从袋中1次随机摸出3个球,记白球的个数为X,则X的可能取值是0,1,2,3;则,,,,随机变量X的概率分布为;
X0123
P
数学期望;记3次摸球后,取到红球的次数大于取到白球的次数为事件A,则.【题目点拨】本题考查了离散型随机变量的概率分布与数学期望的应用问题,也考查了古典概型的概率计算问题,是中档题.18、(1);(2).【解题分析】
(1)这是一个独立重复试验,利用独立重复试验的公式即可计算甲参加了次闯关,求至少有次闯关成功的概率;(2)由题意的取值为,,,,.求出相应概率即可得到的分布列及数学期望.【题目详解】(1)甲参加了次闯关,记“至少有次闯关成功”为事件,则.(2)由题意的取值为,,,,.,,,,,故的分布列为所以.【题目点拨】本题考查了相互独立与对立事件的概率计算公式、独立重复试验的性质,离散型随机变量的分布列及其数学期望,考查了推理能力与计算能力,属于中档题.19、(1)3.95;(2)见解析【解题分析】分析:(1)由频率分布直方图求出补贴分别是3万元,4万元,4.5万元的概率,即得概率分布列,然后可计算出平均值;(2)由频数分布表计算出每天需要充电车辆数的分布列,分别计算出两种方案中新设备可主观能动性车辆数,从而得实际充电车辆数的分布列,由分布列可计算出均值,从而计算出日利润.详解:(1)依题意可得纯电动汽车地方财政补贴的分布列为:纯电动汽车2017年地方财政补贴的平均数为(万元)(2)由充电车辆天数的频数分布表得每天需要充电车辆数的分布列:若采用方案一,100台直流充电桩和900台交流充电桩每天可充电车辆数为(辆)可得实际充电车辆数的分布列如下表:于是方案一下新设备产生的日利润均值为(元)若采用方案二,200台直流充电桩和400台交流充电桩每天可充电车辆数为(辆)可得实际充电车辆数的分布列如下表:于是方案二下新设备产生的日利润均值为(元)点睛:本题考查统计与概率的相关知识,如频率分布直方图,随机变量的分布列,期望,分布表等,考查数据处理能力,运用数据解决实际问题的能力.20、(1),;(2)7.【解题分析】
(1)先求出直线的直角坐标方程,再转换为直线的极坐标方程即可(2)利用直线的参数方程及参数的几何意义求解【题目详解】(1)将点的极坐标化为直角坐标为,因为直线的斜率,所以直线的直角坐标方程为,由可知直线的极坐标方程为.因为(为参数),所以曲线的普通方程为.(2)直线的参数方程为(为参数,为直线的倾斜角),代入,整理得,设点,对应的参数分别为,,则,.【题目点拨】本题考查坐标系中点的极坐标与直角坐标的转换、直线直角坐标方程与极坐标方程的转化及利用直线参数方程中参数的几何意义求值21、(Ⅰ);(Ⅱ)分类讨论,详见解析.【解题分析】
(Ⅰ)由已知得,求得,,由点斜式方程可得解.(Ⅱ)由已知得,分类讨论,,,四种情况下的零点个数.【题目详解】解:(Ⅰ)∵,∴,∴,又,∴切线方程为.(Ⅱ)∵,当时,,即在上为增函数,∵,,∴在上有一个零点.当时,,∵,,∴在上有一个零点.当时,在上为增函数,上为减函数,∵,,此时在上有一个零点.当时,易知在上为增函数,上为减函数,∵,,又有,当,即时,在上有一个零,当时,在上有两个零.综上所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国全自动气动式超声波清洗机行业投资前景及策略咨询研究报告
- 2025至2030年中国黄铜内丝扩口式接头数据监测研究报告
- 二零二五年度个人汽车按揭贷款财产抵押担保合同2篇
- 二零二五年度个人光伏发电设备贷款合同(含发电收益分配)4篇
- 2024年全球AI应用趋势年度报告
- 二零二五年度企业间供应链借款服务协议4篇
- 二零二五年版心脏病患者入学康复辅导与免责合同3篇
- 品牌广告宣传合同
- 股票投资合作合同范本
- 装修施工合同书范本
- 2024年食品行业员工劳动合同标准文本
- 2025年第一次工地开工会议主要议程开工大吉模板
- 糖尿病高渗昏迷指南
- 全屋整装售后保修合同模板
- 壁垒加筑未来可期:2024年短保面包行业白皮书
- 高中生物学科学推理能力测试
- 环保局社会管理创新方案市环保局督察环保工作方案
- GB/T 44423-2024近红外脑功能康复评估设备通用要求
- 2024-2030年中国减肥行业市场发展分析及发展趋势与投资研究报告
- 2024至2030年中国水质监测系统行业市场调查分析及产业前景规划报告
- 运动技能学习
评论
0/150
提交评论