2024届四川省内江市数学高二下期末监测模拟试题含解析_第1页
2024届四川省内江市数学高二下期末监测模拟试题含解析_第2页
2024届四川省内江市数学高二下期末监测模拟试题含解析_第3页
2024届四川省内江市数学高二下期末监测模拟试题含解析_第4页
2024届四川省内江市数学高二下期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省内江市数学高二下期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若对于区间上的任意,都有,则实数的最小值是()A.20 B.18C.3 D.02.已知中,,,,则B等于()A. B.或 C. D.或3.设实数a=log23,b=A.a>b>c B.a>c>b C.b>a>c D.b>c>a4.已知向量||=,且,则()A. B. C. D.5.将3名教师,5名学生分成3个小组,分别安排到甲、乙、丙三地参加社会实践活动,每地至少去1名教师和1名学生,则不同的安排方法总数为()A.1800 B.1440 C.300 D.9006.在等差数列中,已知,数列的前5项的和为,则()A. B. C. D.7.若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人,则().A. B. C. D.8.已知,,且,则的最大值是()A. B. C. D.9.某产品的广告费支出与销售额(单位:万元)之间的关系如下表,由此得到与的线性回归方程为,由此可得:当广告支出5万元时,随机误差的效应(残差)为()245683040605070A.-10 B.0 C.10 D.2010.使函数y=xsinx+cosx是增函数的区间可能是()A. B.(π,2π)C. D.(2π,3π)11.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次,至少击中3次的概率为()A.0.85 B.0.8192 C.0.8 D.0.7512.已知函数的定义域为,集合,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.极坐标方程化成直角坐标方程是__________.14.在一栋6层楼房里,每个房间的门牌号均为三位数,首位代表楼层号,后两位代表房间号,如218表示的是第2层第18号房间,现已知有宝箱藏在如下图18个房间里的某一间,其中甲同学只知道楼层号,乙同学只知道房间号,不知道楼层号,现有以下甲乙两人的一段对话:甲同学说:我不知道,你肯定也不知道;乙同学说:本来我也不知道,但是现在我知道了;甲同学说:我也知道了.根据上述对话,假设甲乙都能做出正确的推断,则藏有宝箱的房间的门牌号是______.15.观察下列不等式,……照此规律,第五个不等式为16.某种活性细胞的存活率(%)与存放温度(℃)之间具有线性相关关系,样本数据如下表所示存放温度(℃)104-2-8存活率(%)20445680经计算得回归直线方程的斜率为-3.2,若存放温度为6℃,则这种细胞存活的预报值为_____%.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点,求抛物线的方程和双曲线的方程.18.(12分)如图,斜三棱柱中,侧面为菱形,底面是等腰直角三角形,,C.(1)求证:直线直线;(2)若直线与底面ABC成的角为,求二面角的余弦值.19.(12分)已知是函数()的一条对称轴,且的最小正周期为.(1)求值和的单调递增区间;(2)设角为的三个内角,对应边分别为,若,,求的取值范围.20.(12分)已知椭圆的离心率为,点为椭圆上一点.(1)求椭圆C的方程;(2)已知两条互相垂直的直线,经过椭圆的右焦点,与椭圆交于四点,求四边形面积的的取值范围.21.(12分)已知等差数列{an},等比数列{bn}满足:a1=b1=1,a2=b2,2a3-b3=1.(1)求数列{an},{bn}的通项公式;(2)记cn=anbn,求数列{cn}的前n项和Sn.22.(10分)如图,直三棱柱中,且,,分别为,的中点.(1)证明:平面;(2)若直线与平面所成的角的大小为,求锐二面角的正切值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,利用导数确定函数的单调性,求最值,即可得出结论.【题目详解】对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,∵f(x)=x3﹣3x﹣1,∴f′(x)=3x2﹣3=3(x﹣1)(x+1),∵x∈[﹣3,2],∴函数在[﹣3,﹣1]、[1,2]上单调递增,在[﹣1,1]上单调递减,∴f(x)max=f(2)=f(﹣1)=1,f(x)min=f(﹣3)=﹣19,∴f(x)max﹣f(x)min=20,∴t≥20,∴实数t的最小值是20,故答案为A【题目点拨】本题考查导数知识的运用,考查恒成立问题,正确求导,确定函数的最值是关键.2、D【解题分析】

根据题意和正弦定理求出sinB的值,由边角关系、内角的范围、特殊角的三角函数值求出B.【题目详解】由题意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,则B=60°或B=120°,故选:D.【题目点拨】本题考查正弦定理,以及边角关系的应用,注意内角的范围,属于基础题.3、A【解题分析】分析:利用指数函数、对数函数的单调性及中间量比较大小.详解:∵a=log23>log22=1,0<b=1312<(1c=log132∴a>b>c.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.4、C【解题分析】

由平面向量模的运算可得:0,得,求解即可.【题目详解】因为向量||,所以0,又,所以2,故选C.【题目点拨】本题考查了平面向量模的运算,熟记运算性质是关键,属基础题.5、D【解题分析】

将三个教师全排列安排到三地,再利用分组、分配方法安排学生,可求出答案.【题目详解】先将3名教师安排到甲、乙、丙三地有种分法,然后安排5名学生,将5名学生可分为1,1,3三组,也可分为2,2,1三组,则安排到三地有种方法;根据分步乘法原理,可知不同的安排方法总数为种.故选D.【题目点拨】本题考查了分步乘法原理的应用,考查了分配问题,考查了计算能力,属于中档题.6、C【解题分析】

由,可求出,结合,可求出及.【题目详解】设数列的前项和为,公差为,因为,所以,则,故.故选C.【题目点拨】本题考查了等差数列的前项和,考查了等差数列的通项公式,考查了计算能力,属于基础题.7、A【解题分析】

先求事件A包含的基本事件,再求事件AB包含的基本事件,利用公式可得.【题目详解】由于6人各自随机地确定参观顺序,在参观的第一小时时间内,总的基本事件有个;事件A包含的基本事件有个;在事件A发生的条件下,在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人的基本事件为个,而总的基本事件为,故所求概率为,故选A.【题目点拨】本题主要考查条件概率的求解,注意使用缩小事件空间的方法求解.8、A【解题分析】

根据题中条件,结合基本不等式,即可得出结果.【题目详解】因为,,所以,;又,所以,当且仅当,即时,等号成立.故选:A【题目点拨】本题主要考查由基本不等式求最值,熟记基本不等式即可,属于基础题型.9、C【解题分析】

由已知求得的值,得到,求得线性回归方程,令求得的值,由此可求解结论.【题目详解】由题意,根据表格中的数据,可得,所以,所以,取,得,所以随机误差的效应(残差)为,故选C.【题目点拨】本题主要考查了回归直线方程的求解,以及残差的求法,着重考查了推理与运算能力,属于基础题.10、C【解题分析】

求函数y=xsinx+cosx的导函数,根据导函数分析出它的单调增区间.【题目详解】由函数得,=.观察所给的四个选项中,均有,故仅需,结合余弦函数的图像可知,时有,所以答案选C.【题目点拨】本题主要考查利用导数研究函数的单调性,对于函数,当时,函数单调递增;当时,函数单调递减,这是解题关键.此题属于基础题.11、B【解题分析】

因为某射击运动员,每次击中目标的概率都是,则该射击运动员射击4次看做4次独立重复试验,则至少击中3次的概率12、D【解题分析】,解得,即,,所以,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:由极坐标方程可得或,化为直角坐标方程即可.详解:由极坐标方程可得或,,即或即答案为或.点睛:本题考查极坐标与直角坐标的互化,属基础题.14、325【解题分析】

利用演绎推理分析可得.根据房间号只出现一次的三个房间排除一些楼层,再在剩下的房间排除筛选可得.【题目详解】甲同学说:我不知道,你肯定也不知道;由此可以判断甲同学的楼层号不是1,4,6,因为房间号01,15,29都只出现一次,假设甲知道楼层号是1楼,若乙拿到的是01,则乙同学肯定知道自己的房间,所以甲肯定不是1层,同理可得甲也不是4,6层.101107126208211219311318325408415425507518526611619629所以只有以下可能的房间:208211219311318325507518526乙同学说:本来我也不知道,但是现在我知道了;由此可知,乙同学通过甲的信息,排除了1,4,6层,在2,3,5层中,由于211,311都是11号,所以乙同学的房间号肯定不是11号,同理排除了318和518.208211219311318325507518526所以只有以下可能的房间:208219325507526最后甲同学说:我也知道了,只有可能是325,因为只有3层的房间号是唯一的.由此判断出藏有宝箱的门牌号是325.【题目点拨】本题考查演绎推理,掌握推理的概念是解题基础.15、:【解题分析】

试题分析:照此规律,第个式子为,第五个为.考点:归纳推理.【名师点睛】归纳推理的定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.是由部分到整体、由个别到一般的推理.16、34【解题分析】分析:根据表格中数据求出,代入公式求得的值,从而得到回归直线方程,将代入回归方程即可得到结果.详解:设回归直线方程,由表中数据可得,代入归直线方程可得,所以回归方程为当时,可得,故答案为.点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、,.【解题分析】试题分析:首先根据抛物线的准线过双曲线的焦点,可得p=2c,再利用抛物线与双曲线同过,求出c、p的值,进而结合双曲线的性质即可求解.试题解析:依题意,设抛物线的方程为y2=2px(p>0),∵点P在抛物线上,∴6=2p×.∴p=2,∴所求抛物线的方程为y2=4x.∵双曲线的左焦点在抛物线的准线x=-1上,∴c=1,即a2+b2=1.又点P在双曲线上,∴,解方程组,得或(舍去).∴所求双曲线的方程为4x2-=1.18、(1)见解析;(2)【解题分析】

(1)先证平面,再证平面,可证直线直线(2)由作AB的垂线,垂足为D,则平面ABC,过A作的平行线,交于E点,则平面ABC,以AB,AC,AE分别为x,y,z轴建立空间直角坐标系,由空间向量法可求得二面角.【题目详解】证明:连接,侧面为菱形,,又C,,平面,,又,,平面,平面,直线直线;解:由知,平面平面,由作AB的垂线,垂足为D,则平面ABC,,得D为AB的中点,过A作的平行线,交于E点,则平面ABC,建立如图所示的空间直角坐标系,设,则为平面的一个法向量,则0,,2,,,设平面的法向量,由,取,得,,故二面角的余弦值为.【题目点拨】利用向量法求二面角的注意事项:(1)两平面的法向量的夹角不一定就是所求的二面角,有可能是两法向量夹角的补角为所求;(2)求平面的法向量的方法有,①待定系数法,设出法向量坐标,利用垂直关系建立坐标的方程,解之即可得法向量;②先确定平面的垂线,然后取相关线段对应的向量,即确定了平面的法向量.19、(1),(2)【解题分析】

(1)由三角函数的辅助角公式,得,求得,又由为对称轴,求得,进而得到则,得出函数的解析式,即可求解函数的单调递增区间;(2)由(1)和,求得,在利用正弦定理,化简得,利用角的范围,即可求解答案.【题目详解】(1),所以.因为为对称轴,所以,即,则,则,所以.令,所以的单调递增区间为.(2),所以,则,由正弦定理得,为外接圆半径,所以,∵,,.【题目点拨】本题主要考查了三角函数的综合应用,以及正弦定理的应用,其中解答中根据题设条件求解函数的解析式,熟记三角函数的恒等变换和三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于中档试题.20、(1);(2)【解题分析】

(1)由题意可得,解得进而得到椭圆的方程;(2)设出直线l1,l2的方程,直线和椭圆方程联立,运用韦达定理和弦长公式,分别求得|AB|,|MN|,再由四边形的面积公式,化简整理计算即可得到取值范围.【题目详解】(1)由题意可得,解得a2=4,b2=3,c2=1故椭圆C的方程为;(2)当直线l1的方程为x=1时,此时直线l2与x轴重合,此时|AB|=3,|MN|=4,∴四边形AMBN面积为S|AB|•|MN|=1.设过点F(1,0)作两条互相垂直的直线l1:x=ky+1,直线l2:xy+1,由x=ky+1和椭圆1,可得(3k2+4)y2+1ky﹣9=0,判别式显然大于0,y1+y2,y1y2,则|AB|••,把上式中的k换为,可得|MN|则有四边形AMBN面积为S|AB|•|MN|••,令1+k2=t,则3+4k2=4t﹣1,3k2+4=3t+1,则S,∴t>1,∴01,∴y=﹣()2,在(0,)上单调递增,在(,1)上单调递减,∴y∈(12,],∴S∈[,1)故四边形PMQN面积的取值范围是【题目点拨】本题考查直线和椭圆的位置关系,同时考查直线椭圆截得弦长的问题,以及韦达定理是解题的关键,属于难题.21、(1)an=bn=1或an=2n-1,bn=3n-1.(2)Sn=n或Sn=(n-1)×3n+1.【解题分析】

(1)先解方程组得到,即得数列{an},{bn}的通项公式.(2)利用错位相减求数列{cn}的前n项和Sn.【题目详解】(1)设{an}的公差为d,{bn}的公比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论