![2024届山东省七校联合体数学高二下期末考试试题含解析_第1页](http://file4.renrendoc.com/view11/M01/1B/02/wKhkGWW-jNKAZ8VUAAH7RBAHsfI783.jpg)
![2024届山东省七校联合体数学高二下期末考试试题含解析_第2页](http://file4.renrendoc.com/view11/M01/1B/02/wKhkGWW-jNKAZ8VUAAH7RBAHsfI7832.jpg)
![2024届山东省七校联合体数学高二下期末考试试题含解析_第3页](http://file4.renrendoc.com/view11/M01/1B/02/wKhkGWW-jNKAZ8VUAAH7RBAHsfI7833.jpg)
![2024届山东省七校联合体数学高二下期末考试试题含解析_第4页](http://file4.renrendoc.com/view11/M01/1B/02/wKhkGWW-jNKAZ8VUAAH7RBAHsfI7834.jpg)
![2024届山东省七校联合体数学高二下期末考试试题含解析_第5页](http://file4.renrendoc.com/view11/M01/1B/02/wKhkGWW-jNKAZ8VUAAH7RBAHsfI7835.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省七校联合体数学高二下期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数定义如下表:1234514253执行如图所示的程序框图,则输出的的值是()A.4 B.5 C.2 D.32.若,则等于()A.3或4 B.4 C.5或6 D.83.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格不及格合计很少使用手机20525经常使用手机101525合计302050则有()的把握认为经常使用手机对数学学习成绩有影响.参考公式:,其中0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.97.5% B.99% C.99.5% D.99.9%4.椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为()A. B. C. D.5.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁6.设,则等于()A. B. C. D.7.若一个直三棱柱的所有棱长都为1,且其顶点都在一个球面上,则该球的表面积为().A. B. C. D.8.已知,,,则的大小关系为()A. B.C. D.9.已知复数,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知离散型随机变量X的分布列如图,则常数c为()X01PA. B. C.或 D.11.已知集合,,则()A. B. C. D.12.若执行如图所示的程序框图,输出的值为,则输入的值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为__________.14.为贯彻教育部关于全面推进素质教育的精神,某学校推行体育选修课.甲、乙、丙、丁四个人分别从太极拳、足球、击剑、游泳四门课程中选择一门课程作为选修课,他们分别有以下要求:甲:我不选太极拳和足球;乙:我不选太极拳和游泳;丙:我的要求和乙一样;丁:如果乙不选足球,我就不选太极拳.已知每门课程都有人选择,且都满足四个人的要求,那么选击剑的是___________.15.已知中,角..的对边分别为..,且,,,则____16.已知,则展开式中的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,且.(1)设,求证数列是等比数列;(2)设,求数列的前项和.18.(12分)已知椭圆的离心率为,顺次连接椭圆的四个顶点,所得到的四边形面积为.(1)求椭圆的方程;(2)设不垂直于坐标轴的直线与相交于两个不同的点,且直线的斜率成等比数列,求线段的中点的轨迹方程.19.(12分)如图,正四棱柱的底面边长,若与底面所成的角的正切值为.(1)求正四棱柱的体积;(2)求异面直线与所成的角的大小.20.(12分)设函数,其中.(Ⅰ)若,讨论的单调性;(Ⅱ)若,(i)证明恰有两个零点(ii)设为的极值点,为的零点,且,证明.21.(12分)已知22.(10分)设数列的前项的和为,且满足,对,都有(其中常数),数列满足.(1)求证:数列是等比数列;(2)若,求的值;(3)若,使得,记,求数列的前项的和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据流程图执行循环,确定周期,即得结果【题目详解】执行循环得:所以周期为4,因此结束循环,输出,选B.【题目点拨】本题考查循环结构流程图,考查基本分析求解能力,属基础题.2、D【解题分析】
根据排列数和组合数公式,化简,即可求出.【题目详解】解:由题意,根据排列数、组合数的公式,可得,,则,且,解得:.故选:D.【题目点拨】本题考查排列数和组合数公式的应用,以及对排列组合的理解,属于计算题.3、C【解题分析】
根据2×2列联表,求出的观测值,结合题中表格数据即可得出结论.【题目详解】由题意,可得:,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响.故选C.【题目点拨】本题考查了独立性检验的应用,考查了计算能力,属于基础题.4、A【解题分析】
利用点关于直线的对称点,且A在椭圆上,得,即得椭圆C的离心率;【题目详解】∵点关于直线的对称点A为,且A在椭圆上,即,∴,∴椭圆C的离心率.故选A.【题目点拨】本题主要考查椭圆的离心率,属于基础题.5、B【解题分析】∵乙、丁两人的观点一致,∴乙、丁两人的供词应该是同真或同假;若乙、丁两人说的是真话,则甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出乙、丙、丁三人不是罪犯的结论,矛盾;∴乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯.6、C【解题分析】
利用计算出定积分的值.【题目详解】依题意得,故选C.【题目点拨】本小题主要考查定积分的计算,考查运算求解能力,属于基础题.7、B【解题分析】
根据题意画出其立体图形.设此直三棱柱两底面的中心分别为,则球心为线段的中点,利用勾股定理求出球的半径,即可求得该球的表面积.【题目详解】画出其立体图形:直三棱柱的所有棱长都为1,且每个顶点都在球的球面上,设此直三棱柱两底面的中心分别为,则球心为线段的中点,设球的半径为,在中是其外接圆半径,由正弦定理可得:,,即在中∴球的表面积.故选:B.【题目点拨】本题主要考查空间几何体中位置关系、球和正棱柱的性质.解决本题的关键在于能想象出空间图形,并能准确的判断其外接球的球心就是上下底面中心连线的中点.8、A【解题分析】
利用等中间值区分各个数值的大小.【题目详解】,,,故,所以.故选A.【题目点拨】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.9、D【解题分析】因为,所以复数在复平面内对应的点为,在第四象限,选D.10、A【解题分析】
根据所给的随机变量的分布列写出两点分步的随机变量的概率要满足的条件,一是两个概率都不小于0,二是两个概率之和是1,解出符合题意的c的值.【题目详解】由随机变量的分布列知,,,,∴,故选A.【题目点拨】本题主要考查分布列的应用,求离散型随机变量的分布列和期望,属于基础题.11、B【解题分析】
先求出集合A,B,由此能求出A∩B.【题目详解】因为所以.故选:B【题目点拨】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.12、C【解题分析】
将所有的算法循环步骤列举出来,得出不满足条件,满足条件,可得出的取值范围,从而可得出正确的选项.【题目详解】,;不满足,执行第二次循环,,;不满足,执行第三次循环,,;不满足,执行第四次循环,,;不满足,执行第五次循环,,;满足,跳出循环体,输出的值为,所以,的取值范围是.因此,输入的的值为,故选C.【题目点拨】本题考查循环结构框图的条件的求法,解题时要将算法的每一步列举出来,结合算法循环求出输入值的取值范围,考查分析问题和推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:先求出四个电子元件的使用寿命超过1000小时的概率都为,再设A={元件1或元件2正常工作},B={元件3或元件4正常工作},再求P(A),P(B),再求P(AB)得解.详解:由于四个电子元件的使用寿命(单位:小时)均服从正态分布,所以四个电子元件的使用寿命超过1000小时的概率都为设A={元件1或元件2正常工作},B={元件3或元件4正常工作},所以所以该部件的使用寿命超过1000小时的概率为.故答案为:.点睛:(1)本题主要考查正态分布曲线,考查独立事件同时发生的概率,意在考查学生对这些知识的掌握水平和分析推理能力.(2)一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,即.14、丙【解题分析】
列出表格,用√表示已选的,用×表示未选的课程,逐个将每门课程所选的人确定下来,即可得知选击剑的人是谁。【题目详解】在如下图中,用√表示该门课程被选择,用×表示该门课程未选,且每行每列只有一个勾,太极拳足球击剑游泳甲××√乙×√②×丙×√×丁√①从上述四个人的要求中知,太极拳甲、乙、丙都不选择,则丁选择太极拳,丁所说的命题正确,其逆否命题为“我选太极拳,那么乙选足球”为真,则选足球的是乙,由于乙、丙、丁都为选择游泳,那么甲选择游泳,最后只有丙选择击剑。故答案为:丙。【题目点拨】本题考查合情推理,充分利用假设法去进行论证,考查推理论证能力,属于中等题。15、【解题分析】,∴,由余弦定理得,∴,故答案为.16、448.【解题分析】由题意可得:,则展开式的通项公式为:,令可得:,则的系数为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)【解题分析】
(1)由已知数列递推式可得,又,得,从而可得数列是等比数列;
(2)由(1)求得数列的通项公式,得到数列的通项公式,进一步得到,然后分类分组求数列的前项和.【题目详解】(1)由已知得代入得又,所以数列是等比数列(2)由(1)得,,因为,,,且时,所以当时,当时,.所以【题目点拨】本题考查数列递推式,考查等比关系的确定,训练了数列的分组求和,属中档题.18、(1);(2),.【解题分析】
(1)由椭圆离心率和四边形的面积公式,求出和的值,即可求得椭圆的方程;(2)若设直线,,则由直线的斜率成等比数列,得,再结合根与系数的关系,可求出的值.【题目详解】(1),四边形的面积,,椭圆(2)设直线,联立,消去得:由,得,,或(a)当时,直线过原点,关于原点对称,故线段的中点即为原点;(b)当时,,设则消去,将代入得注意到判别式,故,所以综合(a)(b),所求轨迹方程为,或者写为,【题目点拨】此题考查的是椭圆方程的求解和直线与椭圆的位置关系,属于中档题.19、(1)(2)【解题分析】
(1)是与底面所成的角,所以,可得,在用柱体体积公式即可求得答案;(2)因为正四棱柱,可得,所以是异面直线与所成的角.【题目详解】(1)如图,连接正四棱柱的底面边长面是与底面所成的角在中,正四棱柱的体积为:.(2)正四棱柱是异面直线与所成的角在中,异面直线与所成的角为:.【题目点拨】本题考查了正四棱柱体积和空间异面直线夹角.在求解异面直线所成角的求解,通过平移找到所成角是解这类问题的关键.20、(I)在内单调递增.;(II)(i)见解析;(ii)见解析.【解题分析】
(I);首先写出函数的定义域,对函数求导,判断导数在对应区间上的符号,从而得到结果;(II)(i)对函数求导,确定函数的单调性,求得极值的符号,从而确定出函数的零点个数,得到结果;(ii)首先根据题意,列出方程组,借助于中介函数,证得结果.【题目详解】(I)解:由已知,的定义域为,且,因此当时,,从而,所以在内单调递增.(II)证明:(i)由(I)知,,令,由,可知在内单调递减,又,且,故在内有唯一解,从而在内有唯一解,不妨设为,则,当时,,所以在内单调递增;当时,,所以在内单调递减,因此是的唯一极值点.令,则当时,,故在内单调递减,从而当时,,所以,从而,又因为,所以在内有唯一零点,又在内有唯一零点1,从而,在内恰有两个零点.(ii)由题意,,即,从而,即,因为当时,,又,故,两边取对数,得,于是,整理得,【题目点拨】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法,考查函数思想、化归与转化思想,考查综合分析问题和解决问题的能力.21、【解题分析】
把z1、z2代入关系式,化简即可【题目详解】,【题目点拨】复数的运算,难点是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木材运输时间保障合同
- 三农产品包装与储存方案设计
- 生产流程标准化与持续改进实践
- 食品饮料行业品质控制与安全保障指南
- 驾校场地出租合同
- 场调查委托合同协议书
- 冷却塔填料采购合同
- 全新搅拌桩合同
- 2025年河南货运从业资格考试模拟考试题库答案大全
- 小学二年级数学上册口算笔算天天练
- 2025新人教版英语七年级下单词表(小学部分)
- 2025年春季1530安全教育记录主题
- 2024年新疆(兵团)公务员考试《行测》真题及答案解析
- 红色喜庆中国传统元宵节英文介绍教育课件
- 给客户的福利合同(2篇)
- 六编元代文学
- 乌海市煤炭企业兼并重组工作方案
- 儿科业务学课件
- 2022年含麻黄碱类复方制剂培训试题和答案
- 中美个人所得税征管与税收流失现状比较
- 可填充颜色的中国地图,世界地图,各省市地图填色
评论
0/150
提交评论