江苏省盐城市东台市2024届数学高二下期末学业质量监测模拟试题含解析_第1页
江苏省盐城市东台市2024届数学高二下期末学业质量监测模拟试题含解析_第2页
江苏省盐城市东台市2024届数学高二下期末学业质量监测模拟试题含解析_第3页
江苏省盐城市东台市2024届数学高二下期末学业质量监测模拟试题含解析_第4页
江苏省盐城市东台市2024届数学高二下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市东台市2024届数学高二下期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象沿轴向右平移个单位后,得到为偶函数,则的最小值为()A. B. C. D.2.某地区一次联考的数学成绩近似地服从正态分布,已知,现随机从这次考试的成绩中抽取100个样本,则成绩低于48分的样本个数大约为()A.6 B.4 C.94 D.963.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是()A.恰有1件一等品 B.至少有一件一等品C.至多有一件一等品 D.都不是一等品4.给出下列三个命题:①“若,则”为假命题;②若为真命题,则,均为真命题;③命题,则.其中正确的个数是()A.0 B.1 C.2 D.35.关于函数的四个结论:的最大值为;函数的图象向右平移个单位长度后可得到函数的图象;的单调递增区间为,;图象的对称中心为其中正确的结论有()A.0个 B.1个 C.2个 D.3个6.下列说法正确的是()A.命题“”的否定是“”B.命题“已知,若则或”是真命题C.命题“若则函数只有一个零点”的逆命题为真命题D.“在上恒成立”在上恒成立7.某研究机构对儿童记忆能力和识图能力进行统计分析,得到如下数据:记忆能力识图能力由表中数据,求得线性回归方程为,,若某儿童的记忆能力为12时,则他的识图能力约为()A.9.2 B.9.5 C.9.8 D.108.关于函数有下述四个结论:①f(x)是偶函数②f(x)在区间(,)单调递增③f(x)在有4个零点④f(x)的最大值为2其中所有正确结论的编号是A.①②④ B.②④ C.①④ D.①③9.某射手每次射击击中目标的概率为,这名射手进行了10次射击,设为击中目标的次数,,,则=A. B. C. D.10.在某项测量中测量结果,若X在内取值的概率为0.3,则X在内取值的概率为()A.0.2 B.0.4 C.0.8 D.0.911.某大学安排5名学生去3个公司参加社会实践活动,每个公司至少1名同学,安排方法共有()种A.60 B.90 C.120 D.15012.已知回归直线的斜率的估计值为1.8,样本点的中心为(4,5),则回归直线方程是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平面四边形中,是对角线的中点,且,.若,则的值为____________.14.从位女生,位男生中选人参加科技比赛,且至少有位女生入选,则不同的选法共有_____________种.(用数字填写答案)15.在的展开式中,常数项的值为______.16.在中,,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在以为顶点的多面体中,平面,,.(1)请在图中作出平面,使得且,并说明理由;(2)证明:.18.(12分)已知集合,其中,集合.若,求;若,求实数的取值范围.19.(12分)“微信运动”是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注“微信运动”公众号查看自己及好友每日行走的步数、排行榜,也可以与其他用户进行运动量的或点赞.现从某用户的“微信运动”朋友圈中随机选取40人,记录他们某一天的行走步数,并将数据整理如下:步数/步0~20002001~50005001~80008001~1000010000以上男性人数/人16954女性人数/人03642规定:用户一天行走的步数超过8000步时为“运动型”,否则为“懈怠型”.(1)将这40人中“运动型”用户的频率看作随机抽取1人为“运动型”用户的概率.从该用户的“微信运动”朋友圈中随机抽取4人,记为“运动型”用户的人数,求和的数学期望;(2)现从这40人中选定8人(男性5人,女性3人),其中男性中“运动型”有3人,“懈怠型”有2人,女性中“运动型”有2人,“懈怠型”有1人.从这8人中任意选取男性3人、女性2人,记选到“运动型”的人数为,求的分布列和数学期望.20.(12分)已知函数(1)当时,解不等式;(2)若时,不等式成立,求实数的取值范围。21.(12分)已知椭圆,若在,,,四个点中有3个在上.(1)求椭圆的方程;(2)若点与点是椭圆上关于原点对称的两个点,且,求的取值范围.22.(10分)如图所示的茎叶图记录了华润万家在渭南城区甲、乙连锁店四天内销售情况的某项指标统计:(I)求甲、乙连锁店这项指标的方差,并比较甲、乙该项指标的稳定性;(Ⅱ)每次都从甲、乙两店统计数据中随机各选一个进行比对分析,共选了3次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求的分布列及数学期望

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

利用三角函数恒等变换,可得,,利用其为偶函数,得到,从而求得结果.【题目详解】因为,所以,因为为偶函数,所以,所以,所以的最小值为,故选B.【题目点拨】该题考查的是有关三角函数的图形平移的问题,在解题的过程中,需要明确平移后的函数解析式,根据其为偶函数,得到相关的信息,从而求得结果.2、B【解题分析】

由已知根据正态分布的特点,可得,根据对称性,则,乘以样本个数得答案.【题目详解】由题意,知,可得,又由对称轴为,所以,所以成绩小于分的样本个数为个.故选:B.【题目点拨】本题考查正态分布曲线的特点及曲线所表示的意义,以及考查正态分布中两个量和的应用,其中熟记正态分布的对称性是解答的关键,属于基础题.3、C【解题分析】

将件一等品编号为,件二等品的编号为,列举出从中任取件的所有基本事件的总数,分别计算选项的概率,即可得到答案.【题目详解】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.【题目点拨】本题主要考查了古典概型及其概率的计算问题,其中明确古典概型的基本概念,以及古典的概型及概率的计算公式,合理作出计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4、B【解题分析】试题分析:①若,则且,所以①正确;②若为真命题,则,应至少有一个是真命题,所以②错;③正确.考点:1.四种命题;2.命题的否定.5、B【解题分析】

把已知函数解析式变形,然后结合型函数的性质逐一核对四个命题得答案.【题目详解】函数的最大值为,故错误;函数的图象向右平移个单位长度后,得即得到函数的图象,故正确;由解得∴的单调递增区间为故错误;由,得图象的对称中心为,故错误.∴其中正确的结论有1个。故选:B.【题目点拨】本题考查命题的真假判断与应用,考查正弦型函数的性质,考查三角函数的平移变换,难度一般.6、B【解题分析】

A.注意修改量词并否定结论,由此判断真假;B.写出逆否命题并判断真假,根据互为逆否命题同真假进行判断;C.写出逆命题,并分析真假,由此进行判断;D.根据对恒成立问题的理解,由此判断真假.【题目详解】A.“”的否定为“”,故错误;B.原命题的逆否命题为“若且,则”,是真命题,所以原命题是真命题,故正确;C.原命题的逆命题为“若函数只有一个零点,则”,因为时,,此时也仅有一个零点,所以逆命题是假命题,故错误;D.“在上恒成立”“在上恒成立”,故错误.故选:B.【题目点拨】本题考查命题真假的判断,涉及到函数零点、含一个量词的命题的真假判断、不等式恒成立问题的理解等内容,难度一般.注意互为逆否命题的两个命题真假性相同.7、B【解题分析】试题分析:当时考点:回归方程8、C【解题分析】

化简函数,研究它的性质从而得出正确答案.【题目详解】为偶函数,故①正确.当时,,它在区间单调递减,故②错误.当时,,它有两个零点:;当时,,它有一个零点:,故在有个零点:,故③错误.当时,;当时,,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C.【题目点拨】画出函数的图象,由图象可得①④正确,故选C.9、A【解题分析】

利用次独立重复实验中恰好发生次的概率计算公式以及方差的计算公式,即可得到结果。【题目详解】由题可得随机变量服从二项分布;由,可得:,解得:故答案选A【题目点拨】本题主要考查二项分布概率和方差的计算公式,属于基础题。10、C【解题分析】

由题意结合正态分布的对称性求解ξ在(0,+∞)内取值概率即可.【题目详解】由正态分布的性质可知正态分布的图象关于直线对称,则,,,即ξ在(0,+∞)内取值概率为0.8.本题选择C选项.【题目点拨】关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.11、D【解题分析】分析:由题意结合排列组合公式整理计算即可求得最终结果.详解:由题意可知,5人的安排方案为或,结合平均分组计算公式可知,方案为时的方法有种,方案为时的方法有种,结合加法公式可知安排方法共有种.本题选择D选项.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.12、D【解题分析】

根据回归直线必过样本点的中心可构造方程求得结果.【题目详解】回归直线斜率的估计值为1.8,且回归直线一定经过样本点的中心,,即.故选:.【题目点拨】本题考查回归直线的求解问题,关键是明确回归直线必过样本点的中心,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、36【解题分析】分析:利用极化恒等式可快速解决此题详解:如图,O为BC中点,(1)(2)把(1)式和(2)式两边平方相减得:该结论称为极化恒等式所以在本题中运用上述结论可轻松解题,所以所以点睛:极化恒等式是解决向量数量积问题的又一个方法,尤其在一些动点问题中运用恰当可对解题思路大大简化,要注意应用.14、【解题分析】

首先想到所选的人中没有女生,有多少种选法,再者需要确定从人中任选人的选法种数,之后应用减法运算,求得结果.【题目详解】根据题意,没有女生入选有种选法,从名学生中任意选人有种选法,故至少有位女生入选,则不同的选法共有种,故答案是.【题目点拨】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有名女生和有两名女生分别有多少种选法,之后用加法运算求解.15、84【解题分析】

由的展开式的通项公式,再由求解即可.【题目详解】解:由的展开式的通项公式,令,即,即展开式的常数项为,故答案为:84.【题目点拨】本题考查了二项式定理,重点考查了二项式展开式通项公式,属基础题.16、【解题分析】

由正弦定理的边化角公式化简得出,再次利用正弦定理的边化角公式得出.【题目详解】由正弦定理的边化角公式得出即所以故答案为:【题目点拨】本题主要考查了正弦定理的边化角公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解题分析】

(1)取中点,连接,则平面即为所求平面,可证明平面;(2)结合(1)先证明三角形是边长为1的正三角形,然后证明,从而可知,由平面,可知,从而可知平面,即可证明.【题目详解】(1)取中点,连接,则平面即为所求平面.∵,,∴且,∴四边形是平行四边形,则,∵平面,平面,∴平面,∵,平面,平面,∴平面,∵平面,平面,且,∴平面平面,∵平面,∴平面,即.(2)由(1)四边形是平行四边形,则,,∵,∴三角形是边长为1的正三角形,∵,,∴,∴,即,∵平面,平面,∴,∵平面,平面,,∴平面,∵平面,∴.【题目点拨】本题考查了平面与平面平行的判定,考查了线面垂直的性质与判定,考查了学生的空间想象能力,属于中档题.18、(1);【解题分析】

解出二次不等式以及分式不等式得到集合和,根据并集的定义求并集;由集合是集合的子集,可得,根据包含关系列出不等式,求出的取值范围.【题目详解】集合,由,则,解得,即,,则,则.,即,可得,解得,故m的取值范围是【题目点拨】本题考查集合的交并运算,以及由集合的包含关系求参数问题,属于基础题.在解有关集合的题的过程中,要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.19、(1),(2)分布列见解析,【解题分析】分析:(1)由题意可知,“运动型”的概率为,且,由此可求求和的数学期望;(2)由题意可知,的所有取值为,求出相应的概率,即可得到的分布列和数学期望.详解:(1)由题意可知,“运动型”的概率为,且,则,.(2)由题意可知,的所有取值为,相应的概率分别为:,,,,所以的分布列为:2345.点睛:本题考查二项分布,超几何分布及其期望,属基础题.20、(1);(2)的取值范围为.【解题分析】分析:(1)进行分类讨论,分别解出种情况下不等式的解集,最后取并集可得不等式的解集;(2)在上恒成立,等价于在上恒成立,可得,从而可得结果.详解:(1)当时,,即不等式的解集为(2)由已知在上恒成立,由,不等式等价于在上恒成立,由,得即:在上恒成立,的取值范围为点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论