2024届江西省赣州市会昌中学、宁师中学数学高二第二学期期末调研试题含解析_第1页
2024届江西省赣州市会昌中学、宁师中学数学高二第二学期期末调研试题含解析_第2页
2024届江西省赣州市会昌中学、宁师中学数学高二第二学期期末调研试题含解析_第3页
2024届江西省赣州市会昌中学、宁师中学数学高二第二学期期末调研试题含解析_第4页
2024届江西省赣州市会昌中学、宁师中学数学高二第二学期期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省赣州市会昌中学、宁师中学数学高二第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在复平面内,复数对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限2.在中,分别为内角的对边,若,,且,则()A.2 B.3 C.4 D.53.设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是()A. B.C. D.4.若直线的参数方程为(为参数),则直线的倾斜角为()A. B. C. D.5.若焦点在轴上的双曲线的离心率为,则该双曲线的一个顶点到其中一条渐近线的距离为()A. B. C. D.6.若函数在上是增函数,则实数的取值范围是()A. B. C. D.7.设,则等于()A. B. C. D.8.如表提供了某厂节能降耗技术改造后在生产产品过程中的记录的产量与相应的生产能耗的几组对应数据如图:根据下表数据可得回归方程,那么表中的值为()A. B. C. D.9.已知复数Z满足:,则()A. B. C. D.10.以下说法中正确个数是()①用反证法证明命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有一个钝角”;②欲证不等式成立,只需证;③用数学归纳法证明(,,在验证成立时,左边所得项为;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,但小前提使用错误.A. B. C. D.11.已知(为虚数单位),则A. B. C. D.12.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若对一切,复数的模始终不大于2,则实数a的取值范围是_______;14.为强化安全意识,某校拟在周一至周五的五天中随机选择天进行紧急疏散演练,则选择的天恰好为连续天的概率是__________.15.若,则的定义域为____________.16.若ξ~N,且P(2<ξ<4)=0.4,则P(ξ<0)=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论在上的单调性;(2)若对恒成立,求正整数的最小值.18.(12分)已知正项等比数列满足,前三项和.(1)求数列的通项公式;(2)若数列满足,的前项和为,证明:.19.(12分)已知函数.(1)讨论函数的单调性;(2)当时,记的极大值为,极小值为,求的取值范围.20.(12分)已知函数,为自然对数的底数.(1)求曲线在处的切线方程;(2)求函数的单调区间与极值.21.(12分)已知实数满足,其中实数满足.(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.22.(10分)使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.周一周二周三周四周五周六周日131626222529307111522242734(Ⅰ)作出散点图,判断与哪一个适合作为每天净利润的回归方程类型?并求出回归方程(,,,精确到);(Ⅱ)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加6千人,7千人,8千人,9千人的概率依次为,,,.试决策超市是否有必要开展抽奖活动?参考数据:,,,.参考公式:,,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:,对应的点,因此是第一象限.考点:复数的四则运算.2、C【解题分析】利用正弦定理可得:,①由余弦定理可得:,②由,得,③由①②③得,,故选C.3、D【解题分析】

先构造函数,再利用导函数研究函数的增减性,结合,的奇偶性判断函数的奇偶性,再结合已知可得,,即可得解.【题目详解】解:设,则,由当时,,则函数在为增函数,又,分别是定义在上的奇函数和偶函数,则在上为奇函数,则函数在为增函数,又,所以,则,则的解集为,即不等式的解集是,故选:D.【题目点拨】本题考查了函数的奇偶性及单调性,重点考查了导数的应用,属中档题.4、D【解题分析】

将直线的参数方程化为普通方程,求出斜率,进而得到倾斜角。【题目详解】设直线的倾斜角为,将直线的参数方程(为参数)消去参数可得,即,所以直线的斜率所以直线的倾斜角,故选D.【题目点拨】本题考查参数方程和普通方程的互化以及直线的倾斜角,属于简单题。5、C【解题分析】

先由双曲线的离心率的值求出的值,然后求出双曲线的顶点坐标和渐近线方程,再利用点到直线的距离公式可求出结果【题目详解】解:因为焦点在轴上的双曲线的离心率为,所以,解得,所以双曲线方程为,其顶点为,渐近线方程为由双曲线的对称性可知,只要求出其中一个顶点到一条渐近线的距离即可不妨求点到直线的距离故选:C【题目点拨】此题考查了双曲线的有关知识和点到直线的距离公式,属于基础题6、D【解题分析】

由题意得在上恒成立,利用分离参数思想即可得出结果.【题目详解】∵,∴,又∵函数在上是增函数,∴在恒成立,即恒成立,可得,故选D.【题目点拨】本题主要考查了已知函数的单调性求参数的取值范围,属于中档题.7、C【解题分析】

利用计算出定积分的值.【题目详解】依题意得,故选C.【题目点拨】本小题主要考查定积分的计算,考查运算求解能力,属于基础题.8、D【解题分析】

计算出、,将点的坐标代入回归直线方程可求出的值.【题目详解】由题意得,,由于回归直线过样本的中心点,所以,,解得,故选:D.【题目点拨】本题考查回归直线方程的应用,解题时要熟悉回归直线过样本中心点这一结论的应用,考查计算能力,属于基础题.9、B【解题分析】

由复数的四则运算法则求出复数,由复数模的计算公式即可得到答案.【题目详解】因为,则,所以,故选B.【题目点拨】本题考查复数的化简以及复数模的计算公式,属于基础题.10、B【解题分析】

①根据“至多有一个”的反设为“至少有两个”判断即可。②不等式两边平方,要看正负号,同为正不等式不变号,同为负不等式变号。③令代入左式即可判断。④整数并不属于大前提中的“有些有理数”【题目详解】命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有两个钝角”;①错欲证不等式成立,因为,故只需证,②错(,,当时,左边所得项为;③正确命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,小前提使用错误.④正确综上所述:①②错③④正确故选B【题目点拨】本题考查推理论证,属于基础题。11、B【解题分析】

由题得,再利用复数的除法计算得解.【题目详解】由题得,故答案为:B【题目点拨】本题主要考查复数的运算,意在考查学生对该知识的掌握水平和分析推理计算能力.12、A【解题分析】

根据条件,构造函数,利用函数的单调性和导数之间的关系即可判断出该函数在上为减函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可.【题目详解】构造函数,;当时,,;;在上单调递减;,;由不等式得:;,且;;原不等式的解集为.故选:.【题目点拨】本题主要考查利用导数研究函数的单调性,考查利用函数单调性的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由模的定义求出模,列出不等式,用几何意义解释此不等式,问题为点到的距离不大于2,而点以原点为圆心的单位圆上,因此只要到圆心距离不大于1即可.【题目详解】由题意,设,,则,而在圆上,∴,即,解得.故答案为:【题目点拨】本题考查复数的模的定义,考查平面上两点间的距离公式.解题关键是利用的几何意义,把它转化为两点间的距离,而其中一点又是单位圆上的动点,由点到圆上点的距离最大值为此点到圆心距离加半径,从而问题可转化为点到圆心的距离不大于1,这样问题易求解.14、【解题分析】试题分析:考查古典概型的计算公式及分析问题解决问题的能力.从个元素中选个的所有可能有种,其中连续有共种,故由古典概型的计算公式可知恰好为连续天的概率是.考点:古典概型的计算公式及运用.15、【解题分析】

根据幂函数和对数函数的性质即可求得.【题目详解】由题解得【题目点拨】本题考查函数定义域,属于基础题.16、0.1.【解题分析】

由正态分布曲线的对称性,可得,进而得到所以,即可求解.【题目详解】由题意,随机变量,且,根据正态分布曲线的对称性,可得,所以.【题目点拨】本题主要考查了正态分布的应用,其中解答中熟记正态分布曲线的对称性是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在上单调递增,在上单调递减;(2)5.【解题分析】分析:(1)对函数求导,分类讨论即可;(2)∵对恒成立,∴,解得或,则正整数的最小值为.即只需要证明当时,对恒成立即可.详解:(1),当时,在上单调递增.当或时,,在单调递减.当且时,令,得;令,得.∴在上单调递增,在上单调递减.(2)∵对恒成立.∴,解得或,则正整数的最小值为.下面证明当时,对恒成立,过程如下:当时,令,得;令,得.故,从而对恒成立.故整数的最小值为.点睛:不等式的证明问题,可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想.18、(1);(2).【解题分析】分析:(1)根据等比数列的性质,可将转化为,再根据数列各项为正数,可得的值,然后根据前三项和,可求得公比,从而可得数列的通项公式;(2)由(1)可得数列的通项公式,从而可得数列的通项公式,再根据数列的特性,利用裂项相消法即可求得.详解:(1)∵∴∵∴∵,且∴∴(2)∵∴∴.点睛:本题主要考查递推公式求通项的应用,以及裂项相消法求数列的和,属于中档题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.19、(1)见解析(2)【解题分析】【试题分析】(1)先对函数求导得到,再对参数分两类进行讨论:时,恒成立,即恒成立,在区间上单调递增;时,有两根,记,则,由得,解得或,所以递增区间是,递减区间是;(2)先借助(1)的结论求出进而转化为求的值域,又,所以,然后构造函数,求导可得,即,所以当时,,即在时单调递减,由,当时,递减,又时,,时,,所以,所以,最后求出的取值范围是.解:(1)函数的定义域为,,(一)时,恒成立,即恒成立,在区间上单调递增;(二)时,有两根,记,则,由得,解得或,所以递增区间是,递减区间是.(2)当时,由(1)得,所以,又,所以,记,则,即,所以当时,,即在时单调递减,由,当时,递减,又时,,时,,所以,所以,所以的取值范围是.点睛:解答本题的第一问时,先对函数求导得到,再对参数分两类进行讨论:即分和两种情形进行讨论;(2)先借助(1)的结论求出进而转化为求的值域,又,所以,然后构造函数,运用导数与函数单调性的关系判定出函数单调性,进而得到,最后求出的取值范围是.20、(1);(2)的单调递减区间为,单调递增区间为;极小值为,无极大值.【解题分析】

首先求得;(1)将代入求得且点坐标,根据导数的几何意义可求得切线斜率,利用点斜式可得切线方程;(2)令导函数等于零,求得,从而可得导函数在不同区间内的符号,进而得到单调区间;根据极值的定义可求得极值.【题目详解】由得:(1)在处切线斜率:,又所求切线方程为:,即:(2)令,解得:当时,;当时,的单调递减区间为:;单调递增区间为:的极小值为:;无极大值【题目点拨】本题考查利用导数求解曲线在某一点处的切线方程、求解导数的单调区间和极值的问题,考查学生对于导数基础应用的掌握.21、(1);(2)【解题分析】

试题分析:(Ⅰ)解不等式可得,可求得时命题中的范围,若为真则说明命题均为真,应将命题中的范围取交集.(Ⅱ)若是的充分不必要条件,则命题的取值的集合是命题的取值集合的真子集.试题解析:解:(Ⅰ):,时,,:为真,(Ⅱ)若是的充分不必要条件,则∴解得.考点:1命题;2充分必要条件.22、(Ⅰ)见解析;(Ⅱ)超市有必要开展抽奖活动【解题分析】

(Ⅰ)在所给的坐标系中,画出散点图,可以发现选择作为每天净利润的回归方程类型比较合适,计算出,按照所给的公式可以求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论