云南省大理、丽江、怒江2024届数学高二下期末统考试题含解析_第1页
云南省大理、丽江、怒江2024届数学高二下期末统考试题含解析_第2页
云南省大理、丽江、怒江2024届数学高二下期末统考试题含解析_第3页
云南省大理、丽江、怒江2024届数学高二下期末统考试题含解析_第4页
云南省大理、丽江、怒江2024届数学高二下期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省大理、丽江、怒江2024届数学高二下期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的长轴长为()A.1 B.2 C. D.42.已知集合,,,则图中阴影部分表示的集合为A.1, B. C. D.3.设是双曲线的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点.若,则双曲线的离心率是()A. B.2 C. D.4.已知定义在上的函数满足:函数的图象关于直线对称,且当成立(是函数的导函数),若,,,则的大小关系是()A. B. C. D.5.若函数的定义域为,则的取值范围为()A. B. C. D.6.已知直线与圆相交所得的弦长为,则圆的半径()A. B.2 C. D.47.已知函数,则使得成立的的解集为()A. B. C. D.8.设函数满足下列条件:(1)是定义在上的奇函数;(2)对任意的,其中,常数,当时,有.则下列不等式不一定成立的是().A.B.C.D.9.已知双曲线my2-x2=1(m∈R)与椭圆+x2=1有相同的焦点,则该双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±3x10.设表示不超过的最大整数(如,).对于给定的,定义,.若当时,函数的值域是(),则的最小值是()A. B. C. D.11.五名应届毕业生报考三所高校,每人报且仅报一所院校,则不同的报名方法的种数是()A. B. C. D.12.已知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,则公差d等于()A.1 B. C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.如图,两条距离为4的直线都与轴平行,它们与抛物线和圆分别交于,和,,且抛物线的准线与圆相切,则的最大值为______.14.直线的参数方程为(为参数),则的倾斜角大小为__________.15.在区间上随机取一个数,使得成立的概率为.16.已知直线:,抛物线:图像上的一动点到直线与到轴距离之和的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(为自然对数的底数).(1)若,求函数的单调区间;(2)在(1)的条件下,求函数在区间上的最大值和最小值.18.(12分)(1)若展开式中的常数项为60,求展开式中除常数项外其余各项系数之和;(2)已知二项式(是虚数单位,)的展开的展开式中有四项的系数为实数,求的值.19.(12分)已知函数(1)试讨论在极值点的个数;(2)若函数的两个极值点为,且,为的导函数,设,求实数的取值范围.20.(12分)在直角坐标系中,以坐标原点为圆心的圆与直线相切。求圆的方程;若圆上有两点关于直线对称,且,求直线的方程;21.(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表.表1,设备改造后样本的频数分布表:质量指标值频数2184814162(1)请估计该企业在设备改造前的产品质量指标的平均数;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元,质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X得分布列和数学期望.22.(10分)给出如下两个命题:命题,;命题已知函数,且对任意,,,都有,求实数的取值范围,使命题为假,为真.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

由椭圆方程得出即可【题目详解】由可得,即所以长轴长为故选:D【题目点拨】本题考查的是由椭圆的方程得长轴长,较简单2、B【解题分析】

图中阴影部分表示的集合为,解出集合,再进行集合运算即可【题目详解】图中阴影部分表示的集合为故选【题目点拨】本题主要考查了图表达集合的关系及交、并、补的运算,注意集合的限制条件.3、C【解题分析】试题分析:双曲线的渐近线为,到一条渐近线的距离,则,在中,,则,设的倾斜角为,则,,在中,,在中,,而,代入化简可得到,因此离心率考点:双曲线的离心率;4、A【解题分析】

由导数性质推导出当x∈(﹣∞,0)或x∈(0,+∞)时,函数y=xf(x)单调递减.由此能求出结果.【题目详解】∵函数的图象关于直线对称,∴关于轴对称,∴函数为奇函数.因为,∴当时,,函数单调递减,当时,函数单调递减.,,,,故选A【题目点拨】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等5、C【解题分析】分析:由题得恒成立,再解这个恒成立问题即得解.详解:由题得恒成立,a=0时,不等式恒成立.a≠0时,由题得综合得故答案为C.点睛:(1)本题主要考查函数的定义域和二次不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析转化能力数形结合思想方法.(2)解答本题恒成立时,一定要讨论a=0的情况,因为不一定时一元二次不等式.6、B【解题分析】

圆心到直线的距离,根据点到直线的距离公式计算得到答案.【题目详解】根据题意:圆心到直线的距离,故,解得.故选:.【题目点拨】本题考查了根据弦长求参数,意在考查学生的计算能力和转化能力.7、A【解题分析】

由已知可得:是偶函数,当时,在为增函数,利用的单调性及奇偶性将转化成:,解得:,问题得解.【题目详解】因为所以是偶函数.当时,又在为增函数,在为减函数所以在为增函数所以等价于,解得:故选:A【题目点拨】本题主要考查了函数单调性及奇偶性的应用,还考查了转化思想及函数单调性的判断,属于中档题。8、C【解题分析】

因为是定义在上的奇函数,所以,由条件(2)得;因为,所以;因为,所以,即即;当时,与大小不定,所以选C.9、A【解题分析】试题分析:由于的焦点为.双曲线可化为.由题意可得.依题意得.所以双曲线方程为.所以渐近线方程为.故选A.考点:1.椭圆的性质.2.双曲线的性质.3.双曲线的标准方程.10、B【解题分析】

先根据的定义化简的表达式为,再根据单调性求出函数在两段上的值域,结合已知条件列不等式即可解得.【题目详解】①当时,.在上是减函数,;②当时,.在上是减函数,.的值域是或所以或,的最小值是.故:B.【题目点拨】本题考查了利用函数的单调性求分段函数的值域,属于中档题.11、D【解题分析】由题意,每个人可以报任何一所院校,则结合乘法原理可得:不同的报名方法的种数是.本题选择D选项.12、C【解题分析】试题分析:设出等差数列的首项和公差,由a3=6,S3=11,联立可求公差d.解:设等差数列{an}的首项为a1,公差为d,由a3=6,S3=11,得:解得:a1=1,d=1.故选C.考点:等差数列的前n项和.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先设直线的方程为,再利用直线与圆锥曲线的位置关系将用表示,再利用导数求函数的最值即可得解.【题目详解】解:由抛物线的准线与圆相切得或7,又,∴.设直线的方程为,则直线的方程为,则.设,,令,得;令,得.即函数在为增函数,在为减函数,故,从而的最大值为,故答案为:.【题目点拨】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.14、【解题分析】分析:根据题意,将直线的参数方程变形为普通方程,由直线的方程形式分析可得答案.详解:根据题意,直线的参数方程为(为参数),则直线的普通的方程为:,斜率为,倾斜角为.故答案为:.点睛:本题考查直线的参数方程及倾斜角,注意将直线的参数方程变形为普通方程.15、【解题分析】

利用零点分段法解不等式,得出解集与区间取交集,再利用几何概型的概率公式计算出所求事件的概率.【题目详解】当时,,解得,此时;当时,成立,此时;当时,,解得,此时.所以,不等式的解集为,因此,由几何概型的概率公式可知,所求事件的概率为,故答案为.s【题目点拨】本题考查绝对值不等式的解法、几何概型概率公式的计算,解题的关键就是解出绝对值不等式,解绝对值不等式一般有零点分段法(分类讨论法)以及几何法两种方法求解,考查计算能力,属于中等题.16、1【解题分析】

首先根据抛物线的性质,可将抛物线上的点到直线和轴的距离和转化为抛物线上的点到直线的距离和到焦点的距离和减1,再根据数形结合求距离和的最小值.【题目详解】设抛物线上的点到直线的距离为,到准线的距离为,到轴的距离为,抛物线上的点到准线的距离和到焦点的距离相等,,,如图所示:的最小值就是焦点到直线的距离,焦点到直线的距离,所以有:的最小值是1,故答案为:1【题目点拨】本题考查抛物线的定义和抛物线的几何性质,意在考查转化与化归,关键是抛物线定义域的转化,属于中档题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为,;单调递减区间为;(2)见解析.【解题分析】

(1)将代入函数中,求出导函数大于零求出递增区间,导函数小于零求出递减区间;(2)分为和和三种情况分别判断在上的单调性,然后求出最大值和最小值.【题目详解】(1)若,则,求导得.因为,令,即,解得或令,即,解得∴函数在和上递增,在上递减.即函数的单调递增区间为,;单调递减区间为(2)①当时,∵在上递减,∴在区间上的最大值为,在区间上的最小值为.②当时,∵在上递减,在上递增,且,∴在上的最大值为,在区间上的最小值为.③当时,∵在上递减,在上递增,且,∴在上的最大值为,在区间上的最小值为.【题目点拨】本题考查了利用导数研究函数的单调性和最值,考查了转化思想和分类讨论思想,属中档题.18、(1)(2)或1【解题分析】

(1)求展开式的通项,根据常数项为60解得a的值,然后在原解析式中代入x=1求得各项系数之和,进而求出结果.(2)求出展开式的通项,因为展开式中有四项的系数为实数,所以r的取值为0,2,4,6,则可得出n的所有的可能的取值.【题目详解】解:(1)展开式的通项为,常数项为,由,,得.令,得各项系数之和为.所以除常数项外其余各项系数之和为.(2)展开式的通项为,因为展开式中有四项的系数为实数,且,,所以或1.【题目点拨】本题考查二项式展开式的通项,考查求二项式特定项的系数,以及虚数单位的周期性,属于基础题.19、(1)见解析;(2)【解题分析】

(1)对函数求导,讨论导函数的正负,即可得到函数的单调性,从而可求出极值的个数;(2)先求出函数的表达式,进而可得到极值点的关系,可用来表示及,代入的表达式,然后构造函数关于的函数,求出值域即可.【题目详解】解:(1)易知定义域为,.①当时,恒成立,在为增函数,没有极值点;②当时,恒成立,在为增函数,没有极值点;③当时,,由,令得,令得,则在上单调递减,在单调递增,故只有一个极大值点,没有极小值点;④当时,由,令得,令得,则在上单调递增,在单调递减,故只有一个极小值点,没有极大值点.(2)由条件得且有两个根,满足,或,因为,所以,故符合题意.因为函数的对称轴,,所以.,则,因为,所以,,,令,则,显然在上单调递减,在单调递增,,,则.故的取值范围是.【题目点拨】本题考查了利用导数研究函数的极值问题,考查了函数的单调性与最值,考查了转化思想与分类讨论思想,属于难题.20、(1)(2)或【解题分析】

(1)直接利用点到直线的距离公式求出半径,即可得出答案。(2)设出直线,求出圆心到直线的距离,利用半弦长直角三角形解出即可。【题目详解】解(1),所以圆的方程为(2)由题意,可设直线的方程为则圆心到直线的距离则,即所以直线的方程为或【题目点拨】本题考查直线与圆的位置关系,属于基础题。21、(1)30.2;(2)分布列见解析,400.【解题分析】

(1)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(2)的可能取值为:240,300,360,420,480,根据直方图求出样本中一、二、三等品的频率分别为,利用独立事件与互斥事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.【题目详解】(1)样本的质量指标平均值为.根据样本质量指标平均值估计总体质量指标平均值为30.2.(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为,故从所有产品中随机抽一件,是一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论