版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省忻州市忻府区忻州一中数学高二第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复平面内的圆:,若为纯虚数,则与复数对应的点()A.必在圆外 B.必在上 C.必在圆内 D.不能确定2.设随机变量的分布列为,则()A.3 B.4 C.5 D.63.将两枚质地均匀的骰子各掷一次,设事件{两个点数互不相同},{出现一个5点},则()A. B. C. D.4.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.5.若函数有个零点,则的取值范围是()A. B.C. D.6.已知函数(其中为自然对数的底数),则不等式的解集为()A. B.C. D.7.设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)8.已知,则的展开式中,项的系数等于()A.180 B.-180 C.-90 D.159.已知命题p:∃x∈R,x2-x+1≥1.命题q:若a2<b2,则a<b,下列命题为真命题的是()A. B. C. D.10.若复数满足,其中为虚数单位,则()A. B. C. D.11.己知,是椭圆的左右两个焦点,若P是椭圆上一点且,则在中()A. B. C. D.112.用数学归纳法证明:,第二步证明由到时,左边应加()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,若实数满足:对任意的,均有,则称是集合的“可行数对”.以下集合中,不存在“可行数对”的是_________.①;②;③;④.14.《左传.僖公十四年》有记载:“皮之不存,毛将焉附?"”这句话的意思是说皮都没有了,毛往哪里依附呢?比喻事物失去了借以生存的基础,就不能存在.皮之不存,毛将焉附?则“有毛”是“有皮”的__________条件(将正确的序号填入空格处).①充分条件②必要条件③充要条件④既不充分也不必要条件15.若命题“,使得成立”是假命题,则实数的取值范围是_______.16.的展开式中,的系数为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论函数的单调性;(2)当时,,求的取值范围.18.(12分)证明下列不等式:(1)用分析法证明:;(2)已知是正实数,且.求证:.19.(12分)已知函数,.(1)若在处的切线与在处的切线平行,求实数的值;(2)若,讨论的单调性;(3)在(2)的条件下,若,求证:函数只有一个零点,且.20.(12分)已知函数的图象过点.(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.21.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)求直线的普通方程及圆C的直角坐标方程;(2)设圆C与直线交于点,若点的坐标为,求的值.22.(10分))已知.(I)试猜想与的大小关系;(II)证明(I)中你的结论.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
设复数,再利用为纯虚数求出对应的点的轨迹方程,再与圆:比较即可.【题目详解】由题,复平面内圆:对应的圆是以为圆心,1为半径的圆.若为纯虚数,则设,则因为为纯虚数,可设,.故故,因为,故.当有.当时,两式相除有,化简得.故复数对应的点的轨迹是.则所有的点都在为圆心,1为半径的圆外.故选:A【题目点拨】本题主要考查复数的轨迹问题,根据复数在复平面内的对应的点的关系求解轨迹方程即可.属于中等题型.2、C【解题分析】分析:根据方差的定义计算即可.详解:随机变量的分布列为,则则、故选D点睛:本题考查随机变量的数学期望和方差的求法,是中档题,解题时要认真审题,注意方差计算公式的合理运用.3、A【解题分析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30,事件B:出现一个5点,有10种,∴,本题选择A选项.点睛:条件概率的计算方法:(1)利用定义,求P(A)和P(AB),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),然后求概率值.4、A【解题分析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【题目详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【题目点拨】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.5、D【解题分析】分析:首先研究函数的性质,然后结合函数图象考查临界情况即可求得最终结果.详解:令,,原问题等价于与有两个不同的交点,当时,,,则函数在区间上单调递增,当时,,,则函数在区间上单调递增,在区间上单调递减,绘制函数图象如图所示,函数表示过坐标原点的直线,考查临界情况,即函数与函数相切的情况,当时,,当时,,数形结合可知:的取值范围是.本题选择D选项.点睛:本题主要考查导数研究函数的单调性,导数研究函数的切线方程,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.6、D【解题分析】
求导得到,函数单调递减,故,解得答案.【题目详解】,则恒成立,故函数单调递减,,故,解得或.故选:.【题目点拨】本题考查了根据导数确定函数单调性,根据单调性解不等式,意在考查学生对于函数性质的灵活运用.7、A【解题分析】
先求出集合A,再求出交集.【题目详解】由题意得,,则.故选A.【题目点拨】本题考点为集合的运算,为基础题目.8、B【解题分析】分析:利用定积分的运算求得m的值,再根据乘方的几何意义,分类讨论,求得xm﹣2yz项的系数.详解:3sinxdx=﹣3cosx=﹣3(cosπ﹣cos0)=6,则(x﹣2y+3z)m=(x﹣2y+3z)6,xm﹣2yz=x4yz.而(x﹣2y+3z)6表示6个因式(x﹣2y+3z)的乘积,故其中一个因式取﹣2y,另一个因式取3z,剩余的4个因式都取x,即可得到含xm﹣2yz=x4yz的项,∴xm﹣2yz=x4yz项的系数等于故选:B.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等。9、B【解题分析】
先判定命题的真假,再结合复合命题的判定方法进行判定.【题目详解】命题p:∃x=1∈R,使x2-x+1≥1成立.故命题p为真命题;当a=1,b=-2时,a2<b2成立,但a<b不成立,故命题q为假命题,故命题p∧q,¬p∧q,¬p∧¬q均为假命题;命题p∧¬q为真命题,故选:B.【题目点拨】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档.10、A【解题分析】
由,得,则,故选A.11、A【解题分析】
根据椭圆方程求出、,即可求出、,再根据余弦定理计算可得;【题目详解】解:因为,所以,,又因为,,所以,在中,由余弦定理,即,,故选:【题目点拨】本题考查椭圆的简单几何性质及余弦定理解三角形,属于基础题.12、D【解题分析】
当成立,当时,写出对应的关系式,观察计算即可得答案.【题目详解】在第二步证明时,假设时成立,即左侧,则成立时,左侧,左边增加的项数是,故选:D.【题目点拨】本题考查数学归纳法,考查到成立时左边项数的变化情况,考查理解与应用的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、②③【解题分析】
由题意,,问题转化为与选项有交点,代入验证,可得结论.【题目详解】由题意对任意的,均有,则,即与选项有交点,对①,与有交点,满足;对②,的图形在的内部,无交点,不满足;对③,的图形在的外部,无交点,不满足;对④,与有交点,满足;故答案为②③.【题目点拨】本题考查曲线与方程的定义的应用,考查了理解与转化能力,将问题转化为与选项有交点是关键.14、①【解题分析】分析:根据充分条件和必要条件的定义进行判断即可.详解:由题意知“无皮”⇒“无毛”,所以“有毛”⇒“有皮”即“有毛”是“有皮”的充分条件.故答案为:①.点睛:本题主要考查充分条件和必要条件的判断,利用充分条件和必要条件的定义是解决本题的关键.15、【解题分析】
根据原命题为假,可得,都有;当时可知;当时,通过分离变量可得,通过求解最值得到结果.【题目详解】由原命题为假可知:,都有当时,,则当时,又,当且仅当时取等号综上所述:本题正确结果:【题目点拨】本题考查根据命题的真假性求解参数范围,涉及到恒成立问题的求解.16、【解题分析】
根据题意,由二项式定理可得的展开式的通项,令的系数为1,解可得的值,将的值导代入通项,计算可得答案.【题目详解】由二项式的展开式的通项为,令,解可得,则有,即的系数为1,故答案为:1.【题目点拨】本题主要考查了二项式定理的应用,关键是掌握二项式定理的形式,着重考查了推理与运算能力,属于基础题..三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)或【解题分析】
(1)将函数求导并化简,对分成两种情况,讨论函数的单调性.(2)原不等式即(),当时,上述不等式显然成立.当时,将不等式变为,构造函数,利用导数研究函数的单调性,由此求得的取值范围.【题目详解】解:(1).①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2)(),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设(),则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,,又单调递减,∴当,,得,∴在上单调递增,得,不满足题设条件;综上所述,或.【题目点拨】本小题主要考查利用导数求解函数参数的函数单调性问题,考查利用导数求解含有参数不等式恒成立问题.对函数求导后,由于导函数含有参数,故需要对参数进行分类讨论,分类讨论标准的制定,往往要根据导函数的情况来作出选择,目标是分类后可以画出导函数图像,进而得出导数取得正、负的区间,从而得到函数的单调区间.18、(1)证明见解析;(2)证明见解析.【解题分析】分析:⑴两边同时平方即可证明不等式⑵构造同理得到其他形式,然后运用不等式证明详解:(1)证明:要证成立,只需证,即证,只需证,即证显然为真,故原式成立.(2)证明:∵,∴.点睛:本题主要考查的是不等式的证明,着重考查了基本不等式的变形与应用,考查了综合法和推理论证的能力,属于中档题。19、(1)(2)见解析(3)见解析【解题分析】分析:(1)先求一阶导函数,,用点斜式写出切线方程(2)先求一阶导函数的根,求解或的解集,判断单调性。(3)根据(2)的结论,求出极值画出函数的示意图,分析函数只有一个零点的等价条件是极小值大于零,函数在是减函数,故必然有一个零点。详解:(1)因为,所以;又。由题意得,解得(2),其定义域为,又,令或。①当即时,函数与随的变化情况如下:当时,,当时,。所以函数在单调递增,在和单调递减②当即时,,所以,函数在上单调递减③当即时,函数与随的变化情况如下:当时,,当时,。所以函数在单调递增在和上单调递减(3)证明:当时,由①知,的极小值为,极大值为.因为且又由函数在是减函数,可得至多有一个零点又因为,所以函数只有一个零点,且.点睛:利用导数求在某点切线方程利用,即可,方程的根、函数的零点、两个函数图像的交点三种思想的转化,为解题思路提供了灵活性,导数作为研究函数的一个基本工具在使用。20、(1),值域为(2)(3)【解题分析】试题分析:(1)根据在图象上,代入计算即可求解,因为,所以,所以,可得函数的值域为;(2)原方程等价于的图象与直线有交点,先证明的单调性,可得到的值域,从而可得实数的取值范围;(3)根据,,转化为二次函数最大值问题,讨论函数的最大值,求解实数即可.试题解析:(1)因为函数的图象过点,所以,即,所以,所以,因为,所以,所以,所以函数的值域为.(2)因为关于的方程有实根,即方程有实根,即函数与函数有交点,令,则函数的图象与直线有交点,又任取,则,所以,所以,所以,所以在R上是减函数(或由复合函数判断为单调递减),因为,所以,所以实数的取值范围是.(3)由题意知,,令,则,当时,,所以,当时,,所以(舍去),综上,存在使得函数的最大值为0.21、(1):,C:;(2)【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 频道包装合同模板
- 施工合同模板合集
- 高危行业用人合同模板
- 房屋建筑学课件
- 电路安装合同模板
- 餐饮咨询合同模板
- 炉具购买合同模板
- 首钢股合同模板
- 食品fob合同模板
- 肯德基假期兼职合同模板
- 第十三届全国黄金行业职业技能竞赛(首饰设计师赛项)考试题及答案
- 期中测试(试题)-2024-2025学年四年级上册数学人教版
- 核聚变制氢技术的创新与应用
- 黑龙江省进城务工人员随迁子女参加高考报名资格审查表
- 地产佣金返还合同模板
- 2024短剧出海白皮书
- 期中素养培优卷(试题)-2024-2025学年人教PEP版英语六年级上册
- 2024-2030年中国可编程逻辑控制器(PLC)行业市场发展趋势与前景展望战略分析报告
- 人教版2024年新教材七年级上册地理教学计划
- 人教版数学四年级上册《单价、数量和总价》说课稿
- 移置式带式输送机(征求意见稿)
评论
0/150
提交评论