北京市石景山区景山学校2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含解析_第1页
北京市石景山区景山学校2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含解析_第2页
北京市石景山区景山学校2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含解析_第3页
北京市石景山区景山学校2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含解析_第4页
北京市石景山区景山学校2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市石景山区景山学校2023-2024学年数学九年级第一学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为()A.1:5 B.4:5 C.2:10 D.2:52.如图,AB切⊙O于点B,C为⊙O上一点,且OC⊥OA,CB与OA交于点D,若∠OCB=15°,AB=2,则⊙O的半径为()A. B.2 C.3 D.43.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个 B.1个 C.2个 D.1个或2个4.已知点P(a,b)是平面直角坐标系中第四象限的点,则化简+|b-a|的结果是()A. B.a C. D.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟6.下列图形中,既是中心对称图形又是轴对称图形的有几个()A.4个 B.3个 C.2个 D.1个7.一张圆形纸片,小芳进行了如下连续操作:将圆形纸片左右对折,折痕为AB,如图.将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.连结AE、AF、BE、BF,如图.经过以上操作,小芳得到了以下结论:;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有A.1个 B.2个 C.3个 D.4个8.如图,矩形矩形,连结,延长分别交、于点、,延长、交于点,一定能求出面积的条件是()A.矩形和矩形的面积之差 B.矩形和矩形的面积之差C.矩形和矩形的面积之差 D.矩形和矩形的面积之差9.下列命题正确的是()A.对角线相等四边形是矩形B.相似三角形的面积比等于相似比C.在反比例函数图像上,随的增大而增大D.若一个斜坡的坡度为,则该斜坡的坡角为10.如图,二次函数的最大值为3,一元二次方程有实数根,则的取值范围是A.m≥3 B.m≥-3 C.m≤3 D.m≤-311.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A. B. C. D.12.某次数学纠错比赛共有道题目,每道题都答对得分,答错或不答得分,全班名同学参加了此次竞赛,他们的得分情况如下表所示:成绩(分)人数则全班名同学的成绩的中位数和众数分别是()A., B., C.,70 D.,二、填空题(每题4分,共24分)13.若点,是抛物线上的两个点,则此抛物线的对称轴是___.14.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解_____.15.如图,一艘轮船从位于灯塔的北偏东60°方向,距离灯塔60海里的小岛出发,沿正南方向航行一段时间后,到达位于灯塔的南偏东45°方向上的处,这时轮船与小岛的距离是__________海里.16.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为_____.17.如图,四边形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若AP⊥DP,则BP的长为_____.18.如图,直线轴于点,且与反比例函数()及()的图象分别交于、两点,连接、,已知的面积为4,则________.三、解答题(共78分)19.(8分)如图,抛物线与轴交于点,,与轴交于点.(1)求点,,的坐标;(2)将绕的中点旋转,得到.①求点的坐标;②判断的形状,并说明理由.(3)在该抛物线对称轴上是否存在点,使与相似,若存在,请写出所有满足条件的点的坐标;若不存在,请说明理由.20.(8分)某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价元(为非负整数),每周的销量为件.(1)求与的函数关系式及自变量的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?21.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且;支架BC与水平线AD垂直.,,,另一支架AB与水平线夹角,求OB的长度(结果精确到1cm;温馨提示:,,)22.(10分)如图,已知,是的中点,过点作.求证:与相切.23.(10分)如图,在中,,,以为原点所在直线为轴建立平面直角坐标系,的顶点在反比例函数的图象上.(1)求反比例函数的解析式:(2)将向右平移个单位长度,对应得到,当函数的图象经过一边的中点时,求的值.24.(10分)如图1是小区常见的漫步机,从侧面看如图2,踏板静止时,踏板连杆与立柱上的线段重合,长为0.2米,当踏板连杆绕着点旋转到处时,测得,此时点距离地面的高度为0.44米.求:(1)踏板连杆的长.(2)此时点到立柱的距离.(参考数据:,,)25.(12分)将一元二次方程化为一般形式,并求出根的判别式的值.26.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:小组

研究报告

小组展示

答辩

91

80

78

81

74

85

79

83

90

(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?

参考答案一、选择题(每题4分,共48分)1、D【分析】由面积法求内切圆半径,通过直角三角形外接圆半径为斜边一半可求外接圆半径,则问题可求.【详解】解:∵62+82=102,∴此三角形为直角三角形,∵直角三角形外心在斜边中点上,∴外接圆半径为5,设该三角形内接圆半径为r,∴由面积法×6×8=×(6+8+10)r,解得r=2,三角形的内切圆半径与外接圆半径的比为2:5,故选D.【点睛】本题主要考查了直角三角形内切圆和外接圆半径的有关性质和计算方法,解决本题的关键是要熟练掌握面积计算方法.2、B【分析】连接OB,由切线的性质可得∠OBA=90°,结合已知条件可求出∠A=30°,因为AB的长已知,所以⊙O的半径可求出.【详解】连接OB,∵AB切⊙O于点B,∴OB⊥AB,∴∠ABO=90°,∵OC⊥OA,∠OCB=15°,∴∠CDO=∠ADO=75°,∵OC=OB,∴∠C=∠OBD=15°,∴∠ABD=75°,∴∠ADB=∠ABD=75°,∴∠A=30°,∴BO=AO,∵AB=2,∴BO2+AB2=4OB2,∴BO=2,∴⊙O的半径为2,故选:B.【点睛】本题考查了切线的性质、等腰三角形的判定和性质以及勾股定理的运用,求出∠A=30°,是解题的关键.3、D【分析】根据垂线段最短,得圆心到直线的距离小于或等于4cm,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离;即可得出公共点的个数.【详解】解:根据题意可知,圆的半径r=4cm.∵OP=4cm,当OP⊥l时,直线和圆是相切的位置关系,公共点有1个;当OP与直线l不垂直时,则圆心到直线的距离小于4cm,所以是相交的位置关系,公共点有2个.∴直线L与⊙O的公共点有1个或2个,故选D.【点睛】本题考查了直线与圆的位置关系.特别注意OP不一定是圆心到直线的距离.4、A【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,求解即可.【详解】∵点P(a,b)是平面直角坐标系中第四象限的点,∴a>0,b<0,∴b−a<0,∴+|b-a|=−b−(b−a)=−b−b+a=−2b+a=a−2b,故选A.【点睛】本题考查点的坐标,二次根式的性质与化简,解题的关键是根据象限特征判断正负.5、B【详解】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm1,则BP为(8﹣t)cm,BQ为1tcm,由三角形的面积计算公式列方程得:×(8﹣t)×1t=15,解得t1=3,t1=5(当t=5时,BQ=10,不合题意,舍去).故当动点P,Q运动3秒时,能使△PBQ的面积为15cm1.故选B.【点睛】此题考查借助三角形的面积计算公式来研究图形中的动点问题.6、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,是中心对称图形;第三个图形是轴对称图形,不是中心对称图形;第四个图形不是轴对称图形,是中心对称图形;既是中心对称图形又是轴对称图形的有1个,故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、D【分析】根据折叠的性质可得∠BMD=∠BNF=90°,然后利用同位角相等,两直线平行可得CD∥EF,从而判定①正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四边形是菱形求出四边形MEBF是菱形,从而得到②正确;根据直角三角形角所对的直角边等于斜边的一半求出∠MEN=30°,然后求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AEM=30°,从而得到∠AEF=60°,同理求出∠AFE=60°,再根据三角形的内角和等于180°求出∠EAF=60°,从而判定△AEF是等边三角形,③正确;设圆的半径为r,求出EN=,则可得EF=2EN=,即可得S四边形AEBF:S扇形BEMF的答案,所以④正确.【详解】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=,∴EF=2EN=,∴S四边形AEBF:S扇形BEMF=故④正确,综上所述,结论正确的是①②③④共4个.故选:D.【点睛】本题圆的综合题型,主要考查了翻折变换的性质,平行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质.注意掌握折叠前后图形的对应关系是关键.8、B【分析】根据相似多边形的性质得到,即AF·BC=AB·AH①.然后根据IJ∥CD可得,,再结合以及矩形中的边相等可以得出IJ=AF=DE.最后根据S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE②,结合①②可得出结论.【详解】解:∵矩形ABCD∽矩形FAHG,,∴AF·BC=AB·AH,又IJ∥CD,∴,又DC=AB,BJ=AH,∴,∴IJ=AF=DE.S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE=AB·AH-DH·DE=(S矩形ABJH-S矩形HDEG).∴能求出△BIJ面积的条件是知道矩形ABJH和矩形HDEG的面积之差.故选:B.【点睛】本题考查了相似多边形的性质,矩形的性质等知识,正确的识别图形及运用相关性质是解题的关键.9、D【分析】根据矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值解答即可.【详解】对角线相等的平行四边形是矩形,故A错误;相似三角形的面积比等于相似比的平方,故B错误;在反比例函数图像上,在每个象限内,随的增大而增大,故C错误;若一个斜坡的坡度为,则tan坡角=,该斜坡的坡角为,故D正确.故选:D【点睛】本题考查的是矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值,熟练的掌握各图形及函数的性质是关键.10、C【解析】方程ax2+bx+c-m=0有实数相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,结合图象可得出m的范围.【详解】方程ax2+bx+c-m=0有实数根,相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,又∵图象最高点y=3,∴二次函数最多可以向下平移三个单位,∴m≤3,故选:C.【点睛】本题主要考查二次函数图象与一元二次方程的关系,掌握二次函数图象与x轴交点的个数与一元二次方程根的个数的关系是解题的关键.11、B【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:=6π,∴r=9,∴S扇形==27π,故选B.【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.12、A【分析】根据中位数的定义把这组数据从小到大排列,求出最中间2个数的平均数;根据众数的定义找出出现次数最多的数即可.【详解】把这组数据从小到大排列,最中间2个数的平均数是(70+80)÷2=75;

则中位数是75;

70出现了13次,出现的次数最多,则众数是70;

故选:A.【点睛】本题考查了众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数,注意众数不止一个.二、填空题(每题4分,共24分)13、x=3【分析】根据抛物线的对称性即可确定抛物线对称轴.【详解】解:点,是抛物线上的两个点,且纵坐标相等.根据抛物线的对称性知道抛物线对称轴是直线.故答案为:.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.14、x1=0,x4=﹣1.【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣1.故答案为:x1=0,x4=﹣1.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.15、(30+30)【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在Rt△BCD中求出BD,相加可得AB的长.【详解】解:过C作CD⊥AB于D点,由题意可得,

∠ACD=30°,∠BCD=45°,AC=1.

在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC•cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,

∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与小岛A的距离是(30+30)海里.

故答案为:(30+30).【点睛】此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.16、x1=﹣1或x2=1.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.【详解】解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点横坐标为1﹣(1﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=1时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=1.故答案为:x1=﹣1或x2=1.【点睛】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.17、1或2【分析】设BP=x,则PC=3-x,根据平行线的性质可得∠B=90°,根据同角的余角相等可得∠CDP=∠APB,即可证明△CDP∽△BPA,根据相似三角形的性质列方程求出x的值即可得答案.【详解】设BP=x,则PC=3-x,∵AB∥CD,∠C=90°,∴∠B=180°-∠C=90°,∴∠B=∠C,∵AP⊥DP,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB,∴△CDP∽△BPA,∴,∵AB=1,CD=2,BC=3,∴,解得:x1=1,x2=2,∴BP的长为1或2,故答案为:1或2【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解题的关键.18、1.【分析】根据反比例函数的几何意义可知:的面积为,的面积为,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数的几何意义可知:的面积为,的面积为,∴的面积为,∴,∴.故答案为1.【点睛】本题考查反比例函数的几何意义,解题的关键是正确理解的几何意义,本题属于基础题型.三、解答题(共78分)19、(1),,;(2)①;②是直角三角形;(3),,,【分析】(1)直接利用y=0,x=0分别得出A,B,C的坐标;(2)①利用旋转的性质结合A,B,C的坐标得出D点坐标;②利用勾股定理的逆定理判断的形状即可;(3)直接利用相似三角形的判定与性质结合三角形各边长进而得出答案.【详解】解:(1)令,则,解得:,,∴,.令,则,∴;(2)①过作轴于点,∵绕点旋转得到,∴,,在和中,∴,∴,.∵,,,∴,,,,∴,∵点在第四象限,∴;②是直角三角形,在中,,在中,,∴,∴是直角三角形;(3)存在∵,∴,∵,∴,作出抛物线的对称轴,∵M是AB的中点,,,∴M(,0),∴点M在对称轴上.∵点在对称轴上,∴设,当时,则,∴,,∴,∴,.当时,则,∴,,∴,∴,,∴,,,.【点睛】此题考查了二次函数与坐标轴的交点,全等三角形的判定与性质,勾股定理,二次函数的图像与性质,以及相似三角形的判定与性质等知识,正确分类讨论是解题关键.20、(1),;(2)每件的售价是17元或者18元.【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y与x的函数关系式,然后根据x的实际意义和售价每件不能高于20元即可求出x的取值范围;(2)根据总利润=单件利润×件数,列方程,并解方程即可.【详解】(1)解:与的函数关系式为∵售价每件不能高于20元∴∴自变量的取值范围是;(2)解:设每件涨价元(为非负整数),则每周的销量为件,根据题意列方程,解得:,所以,每件的售价是17元或者18元.答:如果经营该商品每周的利润是560元,求每件商品的售价是17元或者18元.【点睛】此题考查的是一次函数的应用和一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.21、.【分析】设,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案.【详解】设,∴,∵,∴,∴,∵,∴,解得:,∴.8≈19cm【点睛】本题考查解直角三角形,熟练运用锐角三角函数的定义是解题关键.22、详见解析.【分析】证法一:连接,,,,连接交于点,利用线段垂直平分线的性质和垂径定理的推论证明垂直平分,然后利用垂径定理和平行线的性质求得,从而使问题得证;证法二:连接,,连接交于点,利用垂径定理的推论得到,,然后利用平行线的性质求得,从而使问题得证;证法三:过点作于点,延长交于点,利用垂径定理的推论得到是的中点,然后判断点与点是同一个点,然后然后利用平行线的性质求得,从而使问题得证.【详解】证明:证法一:连接,,,,连接交于点.∵,∴点在的垂直平分线上.∵是的中点,∴,∴,∴点在的垂直平分线上,∴垂直平分,∴,∵,∴,∴,∵点为半径的外端点,∴与相切.证法二:连接,,连接交于点.∵是的中点,∴,∴,∴,∴,∵,∴,∴,∵点为半径的外端点,∴与相切.证法三:过点作于点,延长交于点,∴,,∴是的中点,∵点是的中点,∴点与点是同一个点.∵,∴,∴,∵点为半径的外端点,∴与相切.【点睛】本题考查切线的判定及垂径定理的推论,掌握相关定理灵活应用解题是本题的解题关键.23、(1);(2)值有或【分析】(1)过点作于点,根据,可求出△AOB的面积8,由等腰三角形的三线合一可知△AOD的面积为4,根据反比例函数k的几何意义几何求出k;

(2)分两种情况讨论:①当边的中点在的图象上,由条件可知,即可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论