![2024届山东省济宁市鱼台县第一中学数学高二第二学期期末经典模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M02/25/38/wKhkGWW9NWSAXmngAAICDe8eI30437.jpg)
![2024届山东省济宁市鱼台县第一中学数学高二第二学期期末经典模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M02/25/38/wKhkGWW9NWSAXmngAAICDe8eI304372.jpg)
![2024届山东省济宁市鱼台县第一中学数学高二第二学期期末经典模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M02/25/38/wKhkGWW9NWSAXmngAAICDe8eI304373.jpg)
![2024届山东省济宁市鱼台县第一中学数学高二第二学期期末经典模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M02/25/38/wKhkGWW9NWSAXmngAAICDe8eI304374.jpg)
![2024届山东省济宁市鱼台县第一中学数学高二第二学期期末经典模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M02/25/38/wKhkGWW9NWSAXmngAAICDe8eI304375.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济宁市鱼台县第一中学数学高二第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中的系数是A.-20 B.-5 C.5 D.202.已知函数,是函数的导函数,则的图象大致是()A. B.C. D.3.已知函数在区间上是单调递增函数,则的取值范围为()A. B. C. D.4.《高中数学课程标准》(2017版)规定了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()(注:雷达图(RadarChart),又可称为戴布拉图、蜘蛛网图(SpiderChart),可用于对研究对象的多维分析)A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体水平优于甲5.若复数的实部与虚部相等,其中是实数,则()A.0 B.1 C.2 D.6.已知命题椭圆上存在点到直线的距离为1,命题椭圆与双曲线有相同的焦点,则下列命题为真命题的是()A. B. C. D.7.已知,则()A. B. C. D.8.已知定义在上的可导函数的导函数为,对任意实数均有成立,且是奇函数,不等式的解集是()A. B. C. D.9.若随机变量的分布列为()且,则随机变量的方差等于()A. B. C. D.10.已知i为虚数单位,复数z满足(1-i)·z=2i,是复数z的共轭复数,则下列关于复数z的说法正确的是()A.z=1-i B.C. D.复数z在复平面内表示的点在第四象限11.若,则()A.10 B.-10 C.1014 D.103412.已知椭圆,点在椭圆上且在第四象限,为左顶点,为上顶点,交轴于点,交轴于点,则面积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将极坐标化成直角坐标为_________.14.已知函数f(x)=12x-14sinx-3415.如图所示,在圆锥中,为底面圆的两条直径,,且,,为的中点,则异面直线与所成角的正切值为__________.16.已知某运动队有男运动员名,女运动员名,若现在选派人外出参加比赛,则选出的人中男运动员比女运动员人数多的概率是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为迎接月日的“全民健身日”,某大学学生会从全体男生中随机抽取名男生参加米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于秒,则称为“好体能”.(Ⅰ)写出这组数据的众数和中位数;(Ⅱ)要从这人中随机选取人,求至少有人是“好体能”的概率;(Ⅲ)以这人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取人,记表示抽到“好体能”学生的人数,求的分布列及数学期望.18.(12分)在某项体能测试中,规定每名运动员必需参加且最多两次,一旦第一次测试通过则不再参加第二次测试,否则将参加第二次测试.已知甲每次通过的概率为23,乙每次通过的概率为1(Ⅰ)求甲乙至少有一人通过体能测试的概率;(Ⅱ)记X为甲乙两人参加体能测试的次数和,求X的分布列和期望.19.(12分)如图,在正四棱柱中,已知AB=2,,E、F分别为、上的点,且.(1)求证:BE⊥平面ACF;(2)求点E到平面ACF的距离.20.(12分)已知,均为正实数,求证:.21.(12分)选修4-5:不等式选讲已知函数.(1)解不等式;(2)若函数的最小值为,且,求的取值范围.22.(10分)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)若存在两个极值点,,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
利用二项式展开式的通项公式,求解所求项的系数即可【题目详解】由二项式定理可知:;要求的展开式中的系数,所以令,则;所以的展开式中的系数是是-20;故答案选A【题目点拨】本题考查二项式定理的通项公式的应用,属于基础题。2、A【解题分析】
首先求得导函数解析式,根据导函数的奇偶性可排除,再根据,可排除,从而得到结果.【题目详解】由题意得:为奇函数,图象关于原点对称可排除又当时,,可排除本题正确选项:【题目点拨】此题考查函数图象的识别,考查对函数基础知识的把握程度以及数形结合的思维能力,关键是能够利用奇偶性和特殊位置的符号来排除错误选项,属于中档题.3、A【解题分析】分析:由函数在区间上是单调递增函数,得,进而分离参数得;构造函数,研究函数的值域特征,进而得到的单调性,最后求得的取值范围。详解:因为在区间上是单调递增函数所以,而在区间上所以,即令,则分子分母同时除以,得令,则在区间上为增函数所以所以在区间上恒成立即在区间上恒成立所以函数在区间上为单调递减函数所以所以选A点睛:本题考查了函数与导函数的综合应用,分离参数、构造函数法在解决单调性、最值问题中的应用,综合性强,对分析问题、解决问题的能力要求较高,属于难题。4、D【解题分析】
根据雷达图,依次判断每个选项的正误得到答案.【题目详解】根据雷达图得甲的数据分析素养低于乙,所以A错误根据雷达图得甲的数学建模素养等于数学抽象素养,所以B错误根据雷达图得乙的六大素养中数学建模和数学抽象最差,所以C错误根据雷达图得乙整体为27分,甲整体为22分,乙的六大素养整体水平优于甲,所以D正确故答案选D【题目点拨】本题考查了雷达图,意在考查学生解决问题的能力.5、D【解题分析】分析:根据复数乘法运算法则化简复数,结合已知条件,求出的值,代入后求模即可得到答案.详解:复数的实部与虚部相等,又有,解得,.故选D.点睛:本题考查复数代数形式的乘法运算和复数模的求法,属于基础题.6、B【解题分析】对于命题p,椭圆x2+4y2=1与直线l平行的切线方程是:直线,而直线,与直线的距离,所以命题p为假命题,于是¬p为真命题;对于命题q,椭圆2x2+27y2=54与双曲线9x2−16y2=144有相同的焦点(±5,0),故q为真命题,从而(¬p)∧q为真命题。p∧(¬q),(¬p)∧(¬q),p∧q为假命题,本题选择B选项.7、D【解题分析】分析:先根据诱导公式得,再利用二倍角公式以及弦化切得结果.详解:因为,所以,因此,选D.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.8、A【解题分析】
构造函数,利用导数和已知条件判断出在上递增,由此求解出不等式的解集.【题目详解】要求解的不等式等价于,令,,所以在上为增函数,又因为是奇函数,故,所以,所以所求不等式等价于,所以解集为,故选A.【题目点拨】本小题主要考查构造函数法解不等式,考查导数的运算,考查利用导数判断函数的单调性,考查函数的奇偶性,考查化归与转化的数学思想方法,属于中档题.9、D【解题分析】分析:先根据已知求出a,b的值,再利用方差公式求随机变量的方差.详解:由题得所以故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2)对于离散型随机变量,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,那么=++…+,称为随机变量的均方差,简称为方差,式中的是随机变量的期望.10、C【解题分析】
把已知等式变形,利用复数代数形式的乘除运算化简求出z,然后逐一核对四个选项得答案.【题目详解】复数在复平面内表示的点在第二象限,故选C.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.11、C【解题分析】
先求出,对等式两边求导,代入数据1得到答案.【题目详解】取对等式两边求导取故答案为C【题目点拨】本题考查了二项式定理,对两边求导是解题的关键.12、C【解题分析】
若设,其中,则,求出直线,的方程,从而可得,两点的坐标,表示的面积,设出点处的切线方程,与椭圆方程联立成方程组,消元后判别式等于零,求出点的坐标可得答案.【题目详解】解:由题意得,设,其中,则,所以直线为,直线为,可得,所以,所以,设处的切线方程为由,得,,解得,此时方程组的解为,即点时,面积取最大值故选:C【题目点拨】此题考查了椭圆的性质,三角形面积计算公式,考查了推理能力与计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
试题分析:由题意得,,所以直角坐标为故答案为:考点:极坐标与直角坐标的互化.14、-【解题分析】解:函数f(x)=12因此f'(x0)=12-15、【解题分析】
由于与是异面直线,所以需要平移为相交直线才能找到异面直线与所成角,由此连接OP再利用中位线的性质得到异面直线与所成角为,并求出其正切值.【题目详解】连接,则,即为异面直线与所成的角,又,,,平面,,即,为直角三角形,.【题目点拨】本题考查了异面直线所成角的计算,关键是利用三角形中位线的性质使异面直线平移为相交直线.16、.【解题分析】
将所求事件分为两种情况:男女,男,这两个事件互斥,然后利用古典概型的概率公式和互斥事件的概率加法公式可求出所求事件的概率.【题目详解】事件“选出的人中男运动员比女运动员人数多”包含事件“男女”和事件“男”,由古典概型概率公式和互斥事件的概率加法公式可知,事件“选出的人中男运动员比女运动员人数多”的概率为,故答案为.【题目点拨】本题考查古典概型的概率公式和互斥事件的概率加法公式的应用,解题时要将所求事件进行分类讨论,结合相关公式进行计算,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)这组数据的众数和中位数分别是.(2).(3)分布列见解析;.【解题分析】分析:(Ⅰ)利用众数和中位数的定义写出这组数据的众数和中位数.(Ⅱ)利用古典概型求至少有人是“好体能”的概率.(Ⅲ)利用二项分布求的分布列及数学期望.详解:(I)这组数据的众数和中位数分别是;(II)设求至少有人是“好体能”的事件为A,则事件A包含得基本事件个数为;总的基本事件个数为,(Ⅲ)的可能取值为由于该校男生人数众多,故近似服从二项分布,,,的分布列为故的数学期望点睛:(1)本题主要考查众数和中位数,考查古典概型的计算,考查分布列和期望的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)若~则.18、(Ⅰ)3536X的分布列为;X234P111EX=2×【解题分析】
(Ⅰ)先求出甲未能通过体能测试的概率,然后再求出乙未能通过体能测试的概率,这样就能求出甲、乙都未能通过体能测试的概率,根据对立事件的概率公式可以求出甲乙至少有一人通过体能测试的概率;(Ⅱ)由题意可知X=2,3,4,分别求出P(X=2)、【题目详解】解:(Ⅰ)甲未能通过体能测试的概率为P1乙未能通过体能测试的概率为P2∴甲乙至少有一人通过体能测试的概率为P=1-P(Ⅱ)X=2,3,4P(X=2)=23×12∴X的分布列为X234P111∴EX=2×【题目点拨】本题考查了相互独立事件的概率、对立事件的概率公式、离散型随机变量的分布列和数学期望,考查了数学运算能力.19、(1)见解析(2)【解题分析】分析:(1)以为原点,所在直线分别为轴建立空间直角坐标系,写出要用的点的坐标,要证明线与面垂直,只需证明这条直线与平面上的两条直线垂直即可;(2)为平面的一个法向量,向量在上的射影长即为到平面的距离,根据点到面的距离公式可得到结论.详解:(1)证明:以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立如图所示空间直角坐标系,则D(0,0,0)、A(2,0,0)、B(2,2,0)、C(0,2,0)、D1(0,0,5)、E(0,0,1)、F(2,2,4).∴=(-2,2,0)、=(0,2,4)、=(-2,-2,1)、=(-2,0,1).∵·=0,·=0,∴BE⊥AC,BE⊥AF,且AC∩AF=A.∴BE⊥平面ACF.(2)由(1)知,为平面ACF的一个法向量,∴点E到平面ACF的距离d==.故点E到平面ACF的距离为.点睛:本题主要考查利用空间向量求点到面的距离,属于中档题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20、见证明【解题分析】
方法一:因为,均为正实数,所以由基本不等式可得,,两式相加整理即可;方法二:利用作差法证明【题目详解】解:方法一:因为,均为正实数,所以由基本不等式可得,,两式相加,得,所以.方法二:.所以.【题目点拨】本题考查不等式的证明,一般的思路是借
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级数学上册 12.2 三角形全等的判定 第2课时 用“SAS”判定三角形全等听评课记录 新人教版
- 小学数学苏教版六年级下册《分数和百分数的实际应用(总复习)》公开课听评课记录
- 新北师大版数学一年级下册《买铅笔》听评课记录
- 2025年煤制合成氨合作协议书
- 五年级上册数学口算题
- 四年级教师教学计划
- 一年级苏教版数学下册《认识图形》听评课记录
- 社区团购战略合作协议书范本
- 人货电梯租赁合同范本
- 2025年度事故车辆保险责任免除协议书
- 中国太阳能光电建筑行业现状调研分析及市场前景预测报告(2024版)
- 关于防范遏制矿山领域重特大生产安全事故的硬措施课件
- DL∕T 1100.1-2018 电力系统的时间同步系统 第1部分:技术规范
- Interstellar-星际穿越课件
- 桂花-作文ppt-PPT课件(共14张)
- 配电房日常检查记录表.docx
- 高一数学概率部分知识点总结及典型例题解析 新课标 人教版 必修
- 铁路运费计算方法
- 《小脑梗死护理查房》
- 免疫及炎症相关信号通路
- —桥梁专业施工图设计审查要(终)
评论
0/150
提交评论