贵州省湄潭县湄江中学2024届高二数学第二学期期末学业水平测试试题含解析_第1页
贵州省湄潭县湄江中学2024届高二数学第二学期期末学业水平测试试题含解析_第2页
贵州省湄潭县湄江中学2024届高二数学第二学期期末学业水平测试试题含解析_第3页
贵州省湄潭县湄江中学2024届高二数学第二学期期末学业水平测试试题含解析_第4页
贵州省湄潭县湄江中学2024届高二数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省湄潭县湄江中学2024届高二数学第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若函数在上为增函数,则正实数a的取值范围为()A. B. C. D.2.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列统计结论是不正确的是()A.样本中的女生数量多于男生数量B.样本中有理科意愿的学生数量多于有文科意愿的学生数量C.样本中的男生偏爱理科D.样本中的女生偏爱文科3.设,是实数,则的充要条件是()A. B. C. D.4.在“石头、剪刀、布”游戏中,规定“石头赢剪刀、剪刀赢布、布赢石头”,现有小明、小泽两位同学玩这个游戏,共玩局,每一局中每人等可能地独立选择一种手势.设小明赢小泽的局数为,且,则()A.1 B. C. D.25.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.6.若过点可作两条不同直线与曲线段C:相切,则m的取值范围是()A. B. C. D.7.过双曲线的一个焦点作垂直于实轴的直线,交双曲线于,是另一焦点,若,则双曲线的离心率等于()A. B. C. D.8.从中任取个不同的数,事件“取到的个数之和为偶数”,事件“取到两个数均为偶数”,则()A. B. C. D.9.从1、2、3、4、5、6中任取两个数,事件:取到两数之和为偶数,事件:取到两数均为偶数,则()A. B. C. D.10.只用四个数字组成一个五位数,规定这四个数字必须同时使用,且同一数字不能相邻出现,这样的五位数有()A. B. C. D.11.已知函数是定义在上的偶函数,并且满足,当时,,则()A. B. C. D.12.已知函数的部分图象如图所示,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设的三边长分别为,的面积为,内切圆半径为,则;类比这个结论可知:四面体的四个面的面积分别为,内切球的半径为,四面体的体积为,则__________.14.已知为椭圆上的任意一点,则的最大值为________.15.若,则____.16.某小镇对学生进行防火安全教育知晓情况调查,已知该小镇的小学生、初中生、高中生分别有1400人、1600人、800人,按小学生抽取70名作调查,进行分成抽样,则在初中生中的抽样人数应该是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的展开式中,奇数项的二项式系数之和为128,且前三项系数成等差数列.(1)求的值;(2)若,展开式有多少有理项?写出所有有理项.18.(12分)对于定义域为的函数,如果存在区间,其中,同时满足:①在内是单调函数:②当定义域为时,的值域为,则称函数是区间上的“保值函数”,区间称为“保值函数”.(1)求证:函数不是定义域上的“保值函数”;(2)若函数()是区间上的“保值函数”,求的取值范围;(3)对(2)中函数,若不等式对恒成立,求实数的取值范围.19.(12分)如图所示,四棱锥中,底面,,为中点.(1)试在上确定一点,使得平面;(2)点在满足(1)的条件下,求直线与平面所成角的正弦值.20.(12分)(1)已知,都是正数,并且,求证:;(2)若,都是正实数,且,求证:与中至少有一个成立.21.(12分)已知向量,,函数,在中,,,点在边上,且.(1)求的长;(2)求的面积.22.(10分)为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:时间星期一星期二星期三星期四星期五星期六星期日车流量(万辆)1234567的浓度(微克/立方米)28303541495662(1)求关于的线性回归方程;(提示数据:)(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

求f(x)的导数f′(x),利用f′(x)判定f(x)的单调性,求出f(x)的单调增区间,即得正实数a的取值范围.【题目详解】∵f(x)lnx(a>0),∴f′(x)(x>0),令f′(x)=0,得x,∴函数f(x)在(0,]上f′(x)≤0,在[,+∞)上f′(x)≥0,∴f(x)在(0,]上是减函数,在[,+∞)上是增函数;∵函数f(x)在区间[1,+∞)内是增函数,∴1,又a>0,∴a≥1,∴实数a的取值范围是[1,+∞);故选:B.【题目点拨】本题考查了利用导数来研究函数的单调性问题,解题时应根据导数的正负来判定函数的单调性,利用函数的单调区间来解答问题,是中档题.2、D【解题分析】由条形图知女生数量多于男生数量,有理科意愿的学生数量多于有文科意愿的学生数量,男生偏爱理科,女生中有理科意愿的学生数量多于有文科意愿的学生数量,所以选D.3、C【解题分析】

利用不等式的基本性质证明与可进行互推.【题目详解】对选项C进行证明,即是的充要条件,必要性:若,则两边同时3次方式子仍成立,,成立;充分性:若成,两边开时开3次方根式子仍成立,,成立.【题目点拨】在证明充要条件时,要注意“必要性”与“充分性”的证明方向.4、C【解题分析】

由题意可得,每一局中,小明赢小泽的概率为,且,先由求出,然后即可算出【题目详解】由题意可得,每一局中,小明赢小泽的概率为,且因为,所以所以故选:C【题目点拨】本题考查的是二项分布的知识,若,则,.5、A【解题分析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。6、D【解题分析】

设切点为,写出切线方程为,把代入,关于的方程在上有两个不等实根,由方程根的分布知识可求解.【题目详解】设切点为,,则切线方程为,在切线上,可得,函数在上递增,在上递减,,又,,∴如果有两解,则.故选:D.【题目点拨】本题考查导数的几何意义,考查方程根的分布问题。由方程根的个数确定参数取值范围,可采用分离参数法,转化为直线与函数图象交点个数问题。7、B【解题分析】

根据对称性知是以点为直角顶点,且,可得,利用双曲线的定义得出,再利用锐角三角函数的定义可求出双曲线的离心率的值.【题目详解】由双曲线的对称性可知,是以点为直角顶点,且,则,由双曲线的定义可得,在中,,,故选B.【题目点拨】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题.8、B【解题分析】

先求得和的值,然后利用条件概率计算公式,计算出所求的概率.【题目详解】依题意,,故.故选B.【题目点拨】本小题主要考查条件概型的计算,考查运算求解能力,属于基础题.9、D【解题分析】

根据条件概率公式可得解.【题目详解】事件分为两种情况:两个均为奇数和两个数均为偶数,所以,,由条件概率可得:,故选D.【题目点拨】本题考查条件概率,属于基础题.10、B【解题分析】

以重复使用的数字为数字为例,采用插空法可确定符合题意的五位数的个数;重复使用每个数字的五位数个数一样多,通过倍数关系求得结果.【题目详解】当重复使用的数字为数字时,符合题意的五位数共有:个当重复使用的数字为时,与重复使用的数字为情况相同满足题意的五位数共有:个本题正确选项:【题目点拨】本题考查排列组合知识的综合应用,关键是能够明确不相邻的问题采用插空法的方式来进行求解;易错点是在插空时,忽略数字相同时无顺序问题,从而错误的选择排列来进行求解.11、D【解题分析】

先由题得出函数的周期,再将变量调节到范围内进行求解.【题目详解】因为,所令,则,所以可得,即,所以函数的周期为,则,又因为函数是定义在上的偶函数,且当时,所以故选D【题目点拨】本题考查函数的基本性质,包括周期性,奇偶性,解题的关键是先求出函数的周期,属于一般题.12、C【解题分析】

根据图像最低点求得,根据函数图像上两个特殊点求得的值,由此求得函数解析式,进而求得的值.【题目详解】根据图像可知,函数图像最低点为,故,所以,将点代入解析式得,解得,故,所以,故选C.【题目点拨】本小题主要考查根据三角函数图象求三角函数解析式,并求三角函数值,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】

根据平面和空间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形的面积类比立体图形的体积,结合三角形面积的求法求出三棱锥的体积,进而求出内切球的半径为.【题目详解】设四面体的内切球的球心为,则球心到四个面的距离都为,所以四棱锥的体积等于以为顶点,四个面为底面的四个小三棱锥的体积之和,则四面体的体积为.【题目点拨】本题考查了类比推理.类比推理是指依据两类数学对象的相似性,将已知一类的数学对象的性质迁移到另一个数学对象上去.14、9【解题分析】

设,代入并利用辅助角公式运算即可得到最值.【题目详解】由已知,设,则,故.当时,取得最大值9.故答案为:9【题目点拨】本题考查利用椭圆的参数方程求函数的最值问题,考查学生的基本运算能力,是一道容易题.15、【解题分析】

通过,即可求出的值,通过,即可求出的值,最终可求出的值.【题目详解】令,可得令,可得【题目点拨】本题通过赋值法来研究二项展开式系数的和,是一道基础题.16、80【解题分析】

根据小学生抽取的人数计算抽取比例,再根据这个比例求初中生中需抽取的人数.【题目详解】解:由题可知抽取的比例为,

故初中生应该抽取人数为.

故答案为:80.【题目点拨】本题考查基本的分层抽样,解决分层抽样的关键是抓住各层抽取的比例相等,属基本题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2或14;(2),,.【解题分析】

先由二项式系数的性质求,再根据二项式展开式的通项公式和等差中项公式求;(2)根据二项式展开式的通项公式,令的指数为整数次求解.【题目详解】因为奇数项的二项式系数之和为128,所以,解得,所以二项式为第一项:,系数为1,第二项:,系数为,第三项:,系数为,由前三项系数成等差数列得:,解得或.(2)若,由(1)得二项式为,通项为:,其中所以,令即,此时;令即,不符题意;令即,不符题意;令即,此时;令即,不符题意;令即,不符题意;令即,此时综上,有3项有理项,分别是:,,.【题目点拨】本题考查二项式定理的系数性质和展开式的通项公式,等差中项公式.注意是第项.18、(1)证明见详解;(2)或;(3)【解题分析】

(1)根据“保值函数”的定义分析即可(2)按“保值函数”定义知,,转化为是方程的两个不相等的实根,利用判别式求解即可(3)去掉绝对值,转化为不等式组,分离参数,利用函数最值解决恒成立问题.【题目详解】(1)函数在时的值域为,不满足“保值函数”的定义,因此函数不是定义域上的“保值函数”.(2)因为函数在内是单调增函数,因此,,因此是方程的两个不相等的实根,等价于方程有两个不相等的实根.由解得或.(3),,即为对恒成立.令,易证在单调递增,同理在单调递减.因此,,.所以解得.又或,所以的取值范围是.【题目点拨】本题主要考查了新概念,函数的单调性,一元二次方程有解,绝对值不等式,恒成立,属于难题.19、(1).(2).【解题分析】【试题分析】(1)先确定点的位置为等分点,再运用线面平行的判定定理进行证明平面;(2)借助(1)的结论,及线面角的定义构造三角形找出直线与平面所成角,再通过解直角三角形求出其正弦值:解:(1)证明:平面PAD.过M作交PA于E,连接DE.因为,所以,又,故,且,即为平行四边形,则,又平面PAD,平面PAD,平面;(2)解:因为,所以直线MN与平面PAB所成角等于直线DE与平面PAB所成角

底面ABCD,所以,又因为,所以底面PAB,即为直线DE与平面PAB所成角.因为,所以,所以直线MN与平面PAB所成角的正弦值为。20、(1)详见解析;(2)详见解析.【解题分析】

(1)利用综合法,将两式做差,化简整理,即可证明(2)利用反证法,先假设原命题不成立,再推理证明,得出矛盾,即得原命题成立。【题目详解】(1)因为,都是正数,所以,又,所以,所以,所以,即.(2)假设和都不成立,即和同时成立.且,,.两式相加得,即.此与已知条件相矛盾,和中至少有一个成立.【题目点拨】本题主要考查综合法和反证法证明,其中用反证法证明时,要从否定结论开始,经过正确的推理,得出矛盾,即假设不成立,原命题成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论