2024届绍兴市重点中学数学高二下期末综合测试模拟试题含解析_第1页
2024届绍兴市重点中学数学高二下期末综合测试模拟试题含解析_第2页
2024届绍兴市重点中学数学高二下期末综合测试模拟试题含解析_第3页
2024届绍兴市重点中学数学高二下期末综合测试模拟试题含解析_第4页
2024届绍兴市重点中学数学高二下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届绍兴市重点中学数学高二下期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在一组样本数据为,,,(,,,,,不全相等)的散点图中,若所有样本点都在直线上,则这组样本数据的相关系数为()A. B. C.1 D.-12.已知离散型随机变量ξ~B(20,0.9),若随机变量η=5ξ,则η的数学期望EηA.100 B.90 C.18 D.4.53.分子为1且分母为正整数的分数称为单位分数,1可以分拆为若干个不同的单位分数之和:1=12+13+16,A.228 B.240 C.260 D.2734.若双曲线的离心率大于2,则该双曲线的虚轴长的取值范围是()A. B. C. D.5.等于()A. B.2 C.-2 D.+26.若定义域为的偶函数满足,且当时,,则函数在上的最大值为()A.1 B. C. D.-7.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格.乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是()A.甲B.乙C.丙D.丁8.设函数是定义在实数集上的奇函数,在区间上是增函数,且,则有()A. B.C. D.9.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为310.已知二项式的展开式中二项式系数之和为64,则该展开式中常数项为A.-20 B.-15 C.15 D.2011.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于同一个常数.若第一个单音的频率为f,第三个单音的频率为,则第十个单音的频率为()A. B. C. D.12.已知成等差数列,成等比数列,则等于()A. B. C. D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知在R上不是单调增函数,那么实数的取值范围是____.14.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我没去过城市;乙说:我去过的城市比甲多,但没去过城市;丙说:我们三人去过同一城市,由此可判断甲去过的城市为__________.15.的展开式中含项的系数为_________.16.已知函数,若函数恰有两个不同的零点,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知抛物线的顶点在原点,焦点为.(Ⅰ)求抛物线的方程;(Ⅱ)是抛物线上一点,过点的直线交于另一点,满足与在点处的切线垂直,求面积的最小值,并求此时点的坐标。18.(12分)在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系,曲线,极坐标方程分别为,.(Ⅰ)和交点的极坐标;(Ⅱ)直线的参数方程为(为参数),与轴的交点为,且与交于,两点,求.19.(12分)已知F1,F2分别为椭圆C:的左焦点.右焦点,椭圆上的点与F1的最大距离等于4,离心率等于,过左焦点F的直线l交椭圆于M,N两点,圆E内切于三角形F2MN;(1)求椭圆的标准方程(2)求圆E半径的最大值20.(12分)如图,已知、两个城镇相距20公里,设是中点,在的中垂线上有一高铁站,的距离为10公里.为方便居民出行,在线段上任取一点(点与、不重合)建设交通枢纽,从高铁站铺设快速路到处,再铺设快速路分别到、两处.因地质条件等各种因素,其中快速路造价为1.5百万元/公里,快速路造价为1百万元/公里,快速路造价为2百万元/公里,设,总造价为(单位:百万元).(1)求关于的函数关系式,并指出函数的定义域;(2)求总造价的最小值,并求出此时的值.21.(12分)有3名男生和3名女生,每人都单独参加某次面试,现安排他们的出场顺序.(Ⅰ)若女生甲不在第一个出场,女生乙不在最后一个出场,求不同的安排方式总数;(Ⅱ)若3名男生的出场顺序不同时相邻,求不同的安排方式总数(列式并用数字作答).22.(10分)如图所示,已知是椭圆:的右焦点,直线:与椭圆相切于点.(1)若,求;(2)若,,求椭圆的标准方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据回归直线方程可得相关系数.【题目详解】根据回归直线方程是yx+2,可得这两个变量是负相关,故这组样本数据的样本相关系数为负值,且所有样本点(xi,yi)(i=1,2,…,n)都在直线上,则有|r|=1,∴相关系数r=﹣1.故选D.【题目点拨】本题考查了由回归直线方程求相关系数,熟练掌握回归直线方程的回归系数的含义是解题的关键.2、B【解题分析】

先利用二项分布的期望公式求得Eξ=20×0.9=18,由离散型随机变量的数学期望的性质,可求出随机变量η=5ξ的数学期望.【题目详解】由题设离散型随机变量ξ~B(20,0.9∴Eξ=20×0.9=18,∵η=5ξ,∴Eη=E(5ξ)=5Eξ=5×18=90.故选B.【题目点拨】“求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(3、C【解题分析】

使用裂项法及m,n的范围求出m,n的值,从而求出答案.【题目详解】∵1=1∴1=1∴1∵m⩽n,m,n∈N∴m=13,n=20,所以mn=260.故选:C【题目点拨】本题主要考查归纳推理和裂项相消法,意在考查学生对该知识的理解掌握水平,属于基础题.4、C【解题分析】

根据离心率大于2得到不等式:计算得到虚轴长的范围.【题目详解】,,,故答案选C【题目点拨】本题考查了双曲线的离心率,虚轴长,意在考查学生的计算能力.5、D【解题分析】∵.故选D6、A【解题分析】

根据已知的偶函数以及f(2﹣x)=﹣f(x)可以求得函数f(x)在[﹣2,2]上的解析式,进而得到g(x)在[﹣2,2]上的解析式,对g(x)进行求导可知g(x)的增减性,通过增减性求得最大值【题目详解】根据,得函数关于点(1,0)对称,且当时,,则时,,所以当时,;又函数为偶函数,所以当时,则,可知当,故在[-2,0)上单调递增,时,在[0,2]上单调递减,故.故选:A【题目点拨】本题考查函数的基本性质:对称性,奇偶性,周期性.同时利用导函数的性质研究了函数在给定区间内的最值问题,是中档题7、A【解题分析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙,丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾,故甲预测错误.故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.8、A【解题分析】

由题意可得,,再利用函数在区间上是增函数可得答案.【题目详解】解:为奇函数,,又,,又,且函数在区间上是增函数,,,故选A.【题目点拨】本题考查利用函数的单调性、奇偶性比较函数值的大小,考查利用知识解决问题的能力.9、D【解题分析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差10、C【解题分析】

利用二项式系数之和为64解得,再利用二项式定理得到常数项.【题目详解】二项式的展开式中二项式系数之和为64当时,系数为15故答案选C【题目点拨】本题考查了二项式定理,先计算出是解题的关键,意在考查学生的计算能力.11、B【解题分析】

根据题意,设单音的频率组成等比数列{an},设其公比为q,由等比数列的通项公式可得q的值,进而计算可得答案.【题目详解】根据题意,设单音的频率组成等比数列{an},设其公比为q,(q>0)则有a1=f,a3,则q2,解可得q,第十个单音的频率a10=a1q9=()9ff,故选:B.【题目点拨】本题考查等比数列的通项公式,关键是求出该等比数列的公比,属于基础题.12、B【解题分析】试题分析:因为成等差数列,所以因为成等比数列,所以,由得,,故选B.考点:1、等差数列的性质;2、等比数列的性质.二、填空题:本题共4小题,每小题5分,共20分。13、(﹣∞,﹣1)∪(2,+∞).【解题分析】

根据函数单调性和导数之间的关系,转化为f′(x)≥0不恒成立,即可得到结论.【题目详解】∵函数yx3+mx2+(m+2)x+3,∴f′(x)=x2+2mx+m+2,∵函数yx3+mx2+(m+2)x+3在R上不是增函数,∴f′(x)=x2+2mx+m+2≥0不恒成立,∴判别式△=4m2﹣4(m+2)>0,∴m2﹣m﹣2>0,即m<﹣1或m>2,故答案为:(﹣∞,﹣1)∪(2,+∞).【题目点拨】本题考查了利用导数研究函数的单调性问题,考查了转化思想,考查了二次不等式恒成立的问题,属于中档题.14、A【解题分析】分析:一般利用假设分析法,找到甲去过的城市.详解:假设甲去过的城市为A,则乙去过的城市为A,C,丙去过A城市.假设甲去过的城市为B时,则乙说的不正确,所以甲去过城市不能为B.故答案为:A.点睛:(1)本题主要考查推理证明,意在考查学生对该知识的掌握水平和推理能力.(2)类似本题的题目,一般都是利用假设分析推理法找到答案.15、.【解题分析】

计算出二项展开式通项,令的指数为,求出参数的值,再将参数的值代入二项展开式通项可得出项的系数.【题目详解】的展开式通项为,令,得,因此,的展开式中含项的系数为,故答案为:.【题目点拨】本题考查二项式指定项的系数的计算,解题的关键就是利用二项展开式通项进行计算,考查运算求解能力,属于中等题.16、【解题分析】分析:先根据导数研究图像,再根据与图像交点情况确定实数的取值范围.详解:令,所以当时,;当时,;作与图像,由图可得要使函数恰有两个不同的零点,需点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)面积的最小值为,此时点坐标为.【解题分析】

(Ⅰ)设抛物线的方程是,根据焦点为的坐标求得,进而可得抛物线的方程.(Ⅱ)设,进而可得抛物线在点处的切线方程和直线的方程,代入抛物线方程根据韦达定理可求得,从而,又点到直线的距离,可得.利用导数求解.【题目详解】(Ⅰ)设抛物线的方程是,则,,故所求抛物线的方程为.(Ⅱ)设,由抛物线方程为,得,则,∴直线方程为:,联立方程,得,由,得,从而,又点到直线的距离,∴.令,则,则,∴在上递减,在上递增,∴,面积的最小值为,此时点坐标为.【题目点拨】本题主要考查抛物线的标准方程以及抛物线与直线的关系,考查了函数思想,属于中档题.18、(1)(2)见解析【解题分析】试题分析:(1)联立,极坐标方程,解出,反代得,即得和交点的极坐标;(2)先利用将极坐标方程化为直接坐标方程,再由直线参数方程几何意义得,因此将直线的参数方程代入直角坐标方程,利用韦达定理得,且,因此.试题解析:(Ⅰ)(方法一)由,极坐标方程分别为,’化为平面直角坐标系方程分为.得交点坐标为.即和交点的极坐标分别为.(方法二)解方程组所以,化解得,即,所以和交点的极坐标分别为.(II)(方法一)化成普通方程解得因为,所以.(方法二)把直线的参数方程:(为参数),代入得,,所以.19、(1);(2)【解题分析】

(1)根据椭圆上点与的最大距离和离心率列方程组,解方程组求得的值,进而求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理,利用与三角形内切圆有关的三角形面积公式列式,求得内切圆半径的表达式,利用换元法结合基本不等式求得圆半径的最大值.【题目详解】由条件知,所以.故椭圆的标准方程为;(2)由条件不为,设交椭圆于,设圆的半径为,由可得,即令,(),则当时,.【题目点拨】本小题主要考查椭圆标准方程的求法,考查直线和椭圆位置关系,考查三角形内切圆半径有关计算,考查换元法和基本不等式求最值,属于中档题.20、(1),()(2)最小值为,此时【解题分析】

(1)由题意,根据三角形的性质,即可得到;(2)构造函数,利用导数求得函数的单调性,即可求解函数的最值.【题目详解】(1),,,,(2)设则令,又,所以.当,,,单调递减;当,,,单调递增;所以的最小值为.答:的最小值为(百万元),此时【题目点拨】本题主要考查了函数的实际应用问题,以及利用导数求解函数单调性与最值问题,其中解答中认真审题,合理建立函数的关系式,准确利用导数求解函数的单调性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.21、(Ⅰ)504(Ⅱ)576【解题分析】

(Ⅰ)按女生甲分类:甲在最后一位出场,女生甲不在最后一位出场,两种情况相加得到答案.(Ⅱ)先考虑3名男生全相邻时的安排数,再用总的安排数减去此数得到答案.【题目详解】解:(Ⅰ)方法一:不考虑任何限制,6名同学的出场的总数为,女生甲在第一个出场和女生乙在最后一个出场的总数均为,女生甲在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论