2024届河北省安平中学高二数学第二学期期末联考试题含解析_第1页
2024届河北省安平中学高二数学第二学期期末联考试题含解析_第2页
2024届河北省安平中学高二数学第二学期期末联考试题含解析_第3页
2024届河北省安平中学高二数学第二学期期末联考试题含解析_第4页
2024届河北省安平中学高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省安平中学高二数学第二学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.长方体中,是对角线上一点,是底面上一点,若,,则的最小值为()A. B. C. D.2.高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800 B.3600 C.4320 D.50403.在一组样本数据为,,,(,,,,,不全相等)的散点图中,若所有样本点都在直线上,则这组样本数据的相关系数为()A. B. C.1 D.-14.已知随机变量满足,则下列选项正确的是()A. B.C. D.5.已知函数,且,则曲线在处的切线方程为()A. B.C. D.6.已知函数,当取得极值时,x的值为()A. B. C. D.7.已知向量满足,且,则的夹角为()A. B. C. D.8.函数的图象为()A. B.C. D.9.若函数的定义域为R,则实数a的取值范围为()A. B.(0,1)C. D.(﹣1,0)10.已知函数在上可导且满足,则下列一定成立的为A. B.C. D.11.设复数(是虚数单位),则()A.i B. C. D.12.某产品生产厂家的市场部在对4家商场进行调研时,获得该产品售价单位:元和销售量单位:件之间的四组数据如表:售价x46销售量y1211109为决策产品的市场指导价,用最小二乘法求得销售量y与售价x之间的线性回归方程,那么方程中的a值为A.17 B. C.18 D.二、填空题:本题共4小题,每小题5分,共20分。13.由曲线与直线及所围成的封闭图形的面积为__________.14.已知函数,实数满足,则的值为__________.15.高二(1)班有男生18人,女生12人,现用分层抽样的方法从该班的全体同学中抽取一个容量为5的样本,则抽取的男生人数为____.16.若“,使成立”为真命题,则实数的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知a,b,c分别为△ABC内角A,B,C的对边,向量,且.(1)求角C;(2)若,△ABC的面积为,求△ABC内切圆的半径.18.(12分)为调查某小区居民的“幸福度”.现从所有居民中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶),若幸福度分数不低于8.5分,则称该人的幸福度为“幸福”.(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;(2)以这16人的样本数据来估计整个小区的总体数据,若从该小区(人数很多)任选3人,记表示抽到“幸福”的人数,求的分布列及数学期望和方差.19.(12分)一个盒子装有六张卡片,上面分别写着如下六个函数:,,,(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.20.(12分)已知函数.(1)若函数在区间上单调递增,求的取值范围;(2)设函数,若存在,使不等式成立,求实数的取值范围.21.(12分)设数列an的前项为Sn,点n,Snn,n∈(1)求数列an(2)设bn=3an⋅an+122.(10分)(辽宁省葫芦岛市2018年二模)直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.(1)求圆的直角坐标方程;(2)设圆与直线交于点,若点的坐标为,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

将绕边旋转到的位置,使得平面和平面在同一平面内,则到平面的距离即为的最小值,利用勾股定理解出即可.【题目详解】将绕边旋转到的位置,使得平面和平面在同一平面内,过点作平面,交于点,垂足为点,则为的最小值.,,,,,,,,故选A.【题目点拨】本题考查空间距离的计算,将两折线段长度和的计算转化为同一平面上是解决最小值问题的一般思路,考查空间想象能力,属于中等题.2、B【解题分析】试题分析:先排除了舞蹈节目以外的5个节目,共种,把2个舞蹈节目插在6个空位中,有种,所以共有种.考点:排列组合.3、D【解题分析】

根据回归直线方程可得相关系数.【题目详解】根据回归直线方程是yx+2,可得这两个变量是负相关,故这组样本数据的样本相关系数为负值,且所有样本点(xi,yi)(i=1,2,…,n)都在直线上,则有|r|=1,∴相关系数r=﹣1.故选D.【题目点拨】本题考查了由回归直线方程求相关系数,熟练掌握回归直线方程的回归系数的含义是解题的关键.4、B【解题分析】

利用期望与方差性质求解即可.【题目详解】;.故,.故选.【题目点拨】考查期望与方差的性质,考查学生的计算能力.5、B【解题分析】

先对已知函数f(x)求导,由可得a的值,由此确定函数和其导函数的解析式,进而可得x=0处的切线方程。【题目详解】,,解得,即,,则,,曲线在点处的切线方程为,即.【题目点拨】本题考查求函数某点处的切线方程,解题关键是先由条件求出函数f(x)中的未知量a。6、B【解题分析】

先求导,令其等于0,再考虑在两侧有无单调性的改变即可【题目详解】解:,,的单调递增区间为和,减区间为,在两侧符号一致,故没有单调性的改变,舍去,故选:B.【题目点拨】本题主要考查函数在某点取得极值的性质:若函数在取得极值.反之结论不成立,即函数有,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.7、C【解题分析】

设的夹角为,两边平方化简即得解.【题目详解】设的夹角为,两边平方,得,即,又,所以,则,所以.故选C【题目点拨】本题主要考查平面向量的数量积的计算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、A【解题分析】

利用导数研究函数的单调性,根据单调性,对比选项中的函数图象,从而可得结果.【题目详解】因为,所以,时,,在上递增;时,,在上递减,只有选项符合题意,故选A.【题目点拨】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9、A【解题分析】

首先由题意可得,再由对数式的运算性质变形,然后求解对数不等式得答案.【题目详解】由题意可得,第一个式子解得或;第二个式子化简为,令,则,解得或,则或,则或.即或.综上,实数的取值范围为.故选:A.【题目点拨】本题主要考查以函数定义域为背景的恒成立问题,二次型函数的恒成立问题一般借助判别式进行处理,本题同时兼顾考查了对数的运算性质,综合性较强,侧重考查数学运算的核心素养.10、A【解题分析】易知在上恒成立,在上单调递减,又.本题选择C选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.11、D【解题分析】

先化简,结合二项式定理化简可求.【题目详解】,,故选D.【题目点拨】本题主要考查复数的运算和二项式定理的应用,逆用二项式定理要注意配凑出定理的结构形式.12、B【解题分析】

求出样本中心点,代入线性回归方程,即可求出a的值.【题目详解】由题意,,,线性回归方程,,.故选:B.【题目点拨】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

转化为定积分求解.【题目详解】如图:,曲线与直线及所围成的封闭图形的为曲边形,因为,曲线与直线及的交点分别为,且,,所以,.由曲线与直线及所围成的封闭图形的面积为.【题目点拨】本题考查定积分的意义及计算.14、【解题分析】

根据图像分析,设,代入函数求值即可.【题目详解】由图像可知,设,,即.故填:1.【题目点拨】本题考查了的图像,以及对数运算法则,属于基础题型,本题的关键是根据图像,判断和的正负,去绝对值.15、3【解题分析】

根据分层抽样的比例求得.【题目详解】由分层抽样得抽取男生的人数为5×18故得解.【题目点拨】本题考查分层抽样,属于基础题.16、m≤1【解题分析】,使为真命题则解得则实数的取值范围为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)由得出,利用正弦定理边角互化的思想,以及内角和定理将转化为,并利用两角和的正弦公式求出的值,于此得出角的值;(2)由三角形的面积公式求出,结合余弦定理得出的值,可求出的值,再利用等面积法得出,即可得出的内切圆半径的值.【题目详解】(1)由得,由正弦定理,,.在中,,;(2)由等面积法:得.由余弦定理,,,从而,.【题目点拨】本题考查利用正弦定理、余弦定理解三角形,以及三角形面积的应用,考查三角形内切圆半径的计算,在计算内切圆的半径时,可利用等面积法得出(其中为三角形的面积,为三角形的周长),考查运算求解能力,属于中等题.18、(1);(2)的分布列见解析;数学期望为;方差为【解题分析】

首先由茎叶图统计出“幸福”的人数和其他人数,再计算概率.由茎叶图知任选一人,该人幸福度为“幸福”的概率为,知道在该小区中任选一人该人幸福度为“幸福”的概率为,再计算即可.【题目详解】(1)由茎叶图可知,抽取的16人中“幸福”的人数有12人,其他的有4人;记“从这16人中随机选取3人,至少有2人是“幸福”,”为事件.由题意得(2)由茎叶图知任选一人,该人幸福度为“幸福”的概率为,的可能取值为0,1,2,3,显然则;;;;所以的分布列为0123【题目点拨】本题考查茎叶图、样本估计总体、分布列、数学期望,属于基础题.19、(1)(2)数学期望为.【解题分析】

(Ⅰ)所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数,先求出基本事件总数为,满足条件的基本事件为两张卡片上写的函数均为奇函数,再求出满足条件的基本事件个数为,由此能求出结果.(Ⅱ)ξ可取1,2,3,1.分别求出对应的概率,由此能求出ξ的分布列和数学期望.【题目详解】解:(Ⅰ)为奇函数;为偶函数;为偶函数;为奇函数;为偶函数;为奇函数,所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;基本事件总数为,满足条件的基本事件为两张卡片上写的函数均为奇函数,满足条件的基本事件个数为,故所求概率.(Ⅱ)可取;;;故的分布列为.的数学期望为.【题目点拨】本题主要考查离散型随机变量的分布列与数学期望,属于中档题.求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.20、(1);(2).【解题分析】试题分析:(1)由函数的解析式可得在上单调递增,则的取值范围是;(2)原问题等价于存在,使不等式成立.构造新函数,结合函数的性质可得实数的取值范围为.试题解析:(1)由得,在上单调递增,,的取值范围是.(2)存在,使不等式成立,存在,使不等式成立.令,从而,,,在上单调递增,.实数的取值范围为.21、(1)an=6n-5【解题分析】

分析:(1)点n,Snnn∈N*均在函数y=3x-2(2)由bn=3an详解:(1)∵点n,Snn∴S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论