版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省广安遂宁资阳等六市数学高二第二学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若方程在上有两个不等实根,则实数m的取值范围是()A. B. C. D.2.已知甲口袋中有个红球和个白球,乙口袋中有个红球和个白球,现从甲,乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为,则()A. B. C. D.3.计算的值是()A.72 B.102 C.5070 D.51004.对于函教f(x)=ex(x-1)A.1是极大值点 B.有1个极小值 C.1是极小值点 D.有2个极大值5.已知函数,函数有四个不同的零点、、、,且满足:,则的取值范围是()A. B. C. D.6.若a|a|>b|b|,则下列判断正确的是()A.a>b B.|a|>|b|C.a+b>0 D.以上都有可能7.已知集合,则()A. B.C. D.8.若实数满足条件,则的最小值为A. B. C. D.9.函数在闭区间上有最大值3,最小值为2,的取值范围是A. B. C. D.10.在中,,则()A. B. C. D.11.数列满足是数列为等比数列的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件12.已知的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.条件,条件,若是的充分不必要条件,则实数的取值范围是______________.14.函数是奇函数的导函数,,当时,,则使得成立的x的取值范围是________.15.以下四个关于圆锥曲线命题:①“曲线为椭圆”的充分不必要条件是“”;②若双曲线的离心率,且与椭圆有相同的焦点,则该双曲线的渐近线方程为;③抛物线的准线方程为;④长为6的线段的端点分别在、轴上移动,动点满足,则动点的轨迹方程为.其中正确命题的序号为_________.16.关于的不等式恒成立,则的取值范围为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.0.4000.2500.1500.1000.0500.0250.7081.3232.0722.7063.8415.024参考公式:18.(12分)已知函数.(1)讨论的单调性;(2)若存在实数,使得,求正实数的取值范围.19.(12分)已知函数,(其中,且),(1)若,求实数的值;(2)能否从(1)的结论中获得启示,猜想出一个一般性的结论并证明你的猜想.20.(12分)已知函数.(1)判断的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设,试讨论的零点个数情况.21.(12分)在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率.22.(10分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(Ⅰ)写出的普通方程和的直角坐标方程:(Ⅱ)设点在上,点在上,求的最小值及此时的直角坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
对的范围分类,即可将“方程在上有两个不等实根”转化为“在内有实数解,且方程的正根落在内”,记,结合函数零点存在性定理即可列不等式组,解得:,问题得解.【题目详解】当时,可化为:整理得:当时,可化为:整理得:,此方程必有一正、一负根.要使得方程在上有两个不等实根,则在内有实数解,且方程的正根落在内.记,则,即:,解得:.故选C【题目点拨】本题主要考查了分类思想及转化思想,还考查了函数零点存在性定理的应用,还考查了计算能力及分析能力,属于难题.2、A【解题分析】
先求出的可能取值及取各个可能取值时的概率,再利用可求得数学期望.【题目详解】的可能取值为.表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故.表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故.表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故.所以.故选A.【题目点拨】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布,也可以直接利用公式求期望.3、B【解题分析】
根据组合数和排列数计算公式,计算出表达式的值.【题目详解】依题意,原式,故选B.【题目点拨】本小题主要考查组合数和排列数的计算,属于基础题.4、A【解题分析】
求出函数的导数,解关于导函数的不等式,求出函数的极值点,再逐项判断即可.【题目详解】f'当f当f'故选:A【题目点拨】本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.5、D【解题分析】
作出函数的图象,可得出当直线与函数的图象有四个交点时的取值范围,根据图象得出,,并求出实数的取值范围,将代数式转化为关于的函数,利用双勾函数的基本性质求出的取值范围.【题目详解】作出函数的图象如下图所示:由图象可知,当时,直线与函数的图象有四个交点,由于二次函数的图象关于直线对称,则,又,由题意可知,,,,可得,,由,即,解得.,令,则,由基本不等式得,当且仅当时,等号成立,当时,,当时,,所以,,因此,的取值范围是,故选:D.【题目点拨】本题考查函数零点的取值范围,解题时要充分利用图象的对称性以及对数的运算性质得出一些定值条件,并将所求代数式转化为以某个变量为自变量的函数,转化为函数值域求解,考查化归与转化思想、函数方程思想的应用,属于中等题.6、A【解题分析】
利用已知条件,分类讨论化简可得.【题目详解】因为,所以当时,有,即;当时,则一定成立,而和均不一定成立;当时,有,即;综上可得选项A正确.故选:A.【题目点拨】本题主要考查不等关系的判定,不等关系一般是利用不等式的性质或者特值排除法进行求解,侧重考查逻辑推理的核心素养.7、D【解题分析】,所以,故选B.8、B【解题分析】分析:作出约束条件的平面区域,易知z=的几何意义是点A(x,y)与点D(﹣1,0)连线的直线的斜率,从而解得.详解:由题意作实数x,y满足条件的平面区域如下,z=的几何意义是点P(x,y)与点D(﹣1,0),连线的直线的斜率,由,解得A(1,1)故当P在A时,z=有最小值,z==.故答案为:B.点睛:(1)本题主要考查线性规划和斜率的应用,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)表示两点所在直线的斜率.9、C【解题分析】
本题利用数形结合法解决,作出函数的图象,如图所示,当时,最小,最小值是2,当时,,欲使函数在闭区间,上的上有最大值3,最小值2,则实数的取值范围要大于等于1而小于等于2即可.【题目详解】解:作出函数的图象,如图所示,当时,最小,最小值是2,当时,,函数在闭区间,上上有最大值3,最小值2,则实数的取值范围是,.故选:.【题目点拨】本题考查二次函数的值域问题,其中要特别注意它的对称性及图象的应用,属于中档题.10、D【解题分析】
利用余弦定理计算出的值,于此可得出的值.【题目详解】,,由余弦定理得,,因此,,故选D.【题目点拨】本题考查利用余弦定理求角,解题时应该根据式子的结构确定对象角,考查计算能力,属于基础题.11、B【解题分析】分析:由反例得充分性不成立,再根据等比数列性质证必要性成立.详解:因为满足,所以充分性不成立若数列为等比数列,则,即必要性成立.选B.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.12、A【解题分析】由题意可得:,由二项式系数的性质可得:奇数项的二项式系数和为.本题选择A选项.点睛:1.二项展开式的通项是展开式的第k+1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数要根据通项公式讨论对k的限制.2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.3.二项式定理的应用主要是对二项展开式正用、逆用,要充分利用二项展开式的特点和式子间的联系.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
解:是的充分而不必要条件,,等价于,的解为,或,,故答案为:.14、【解题分析】
根据条件构造函数,其导数为,可知函数偶函数在时是减函数,结合函数零点即可求解.【题目详解】构造函数,其导数为,当时,,所以函数单调递减,又,所以当时,,即,因为为奇函数,所以为偶函数,所以当时,的解为,即的解为,综上x的取值范围是.【题目点拨】本题主要考查了抽象函数,导数,函数的单调性,函数的奇偶性,函数的零点,属于难题.15、③④【解题分析】
对于①,求出“曲线为椭圆”的充要条件,判断与“”关系,即得①的正误;对于②,根据已知条件求出双曲线的方程,从而求出渐近线方程,即得②的正误;对于③,把抛物线的方程化为标准式,求出准线方程,即得③的正误;对于④,设,根据,可得,代入,求出动点的轨迹方程,即得④的正误.【题目详解】对于①,“曲线为椭圆”的充要条件是“且”.所以“曲线为椭圆”的必要不充分条件是“”,故①错误;对于②,椭圆的焦点为,又双曲线的离心率,所以双曲线的方程为,所以双曲线的渐近线方程为,故②错误;对于③,抛物线的方程化为标准式,准线方程为,故③正确;对于④,设,,,即,即动点的轨迹方程为.故④正确.故答案为:③④.【题目点拨】本题考查充分必要条件、圆锥曲线的性质和求轨迹方程的方法,属于中档题.16、【解题分析】
由题意得,由绝对值三角不等式求出函数的最小值,从而可求出实数的取值范围.【题目详解】由题意得,由绝对值三角不等式得,,因此,实数的取值范围是,故答案为:.【题目点拨】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解题分析】分析:(1)不低于86的成绩有6个,可用列举法列出任取2个的所有事件,计算出概率.(2)由茎叶图中数据得出列联表中数据,再根据计算公式计算出得知结论.详解:(1)由题意知本题是一个等可能事件的概率,试验发生包含的事件是从不低于86分的成绩中随机抽取两个包含的基本事件是:(86,91),(86,96),(86,97),(86,99),(86,99),(91,96),(91,97),(91,99),(91,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共有15种结果,符合条件的事件数(91,96),(91,97),(91,99),(91,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共有13种结果,根据等可能事件的概率得到P==.(2)由已知数据得甲班乙班总计成绩优秀156成绩不优秀191514总计232343根据列联表中的数据,计算得随机变量K2的观测值k=≈1.117,由于1.117>2.736,所以在犯错误的概率不超过3.1的前提下认为:“成绩优秀”与教学方式有关.点睛:本题考查等可能事件的概率及独立性检验,用列举法求此概率是常用方法,由所给公式计算出即知有无关系的结论,因此本题还考查了运算求解能力.18、(1)见解析;(2).【解题分析】
(1)求出定义域以及,分类讨论,求出大于0和小于0的区间,从而得到的单调区间;(2)结合(1)的单调性,分类讨论,分别求出和以及函数在上的单调区间以及最小值,从而求出的范围。【题目详解】(1)的定义域为,.当时,,则在上单调递增;当时,由得:﹔由得:.所以在上单调递减,在上单调递增.综上所述:当时,的单调递增区间为;当时,的单调递减区间为,单调递增区间为.(2)由(1)知,当时,在上单调递减,在上单调递增。①当即时,在上单调递增,不符合题意;②当即时,在上单调递减,在上单调递增,由,解得:;③当即时,在上单调递减,由,解得:.综上所述:a的取值范围是.【题目点拨】本题考查函数的单调性,函数的最值问题,考查导数的应用,分类讨论的思想,有一定的综合性。19、(1)(2)猜想:;证明见解析【解题分析】
(1)分别代入并化简,可得,即可求出答案;(2)猜想:;分别代入表达式,化简并整理即可证明.【题目详解】解:(1).因为函数与具有相同的单调性,且都是单调函数,所以是单调函数..(2)由,猜想:.证明:.所以.【题目点拨】本题考查了归纳推理,考查了学生的推理能力,属于中档题.20、(1)的图象是中心对称图形,对称中心为:;(2)当或时,有个零点;当时,有个零点【解题分析】
(1)设,通过奇偶性的定义可求得为奇函数,关于原点对称,从而可得的对称中心,得到结论;(2),可知为一个解,从而将问题转化为解的个数的讨论,即的解的个数;根据的范围,分别讨论不同范围情况下方程解的个数,从而得到零点个数,综合得到结果.【题目详解】(1)设定义域为:为奇函数,图象关于对称的图象是中心对称图形,对称中心为:(2)令,可知为其中一个解,即为一个零点只需讨论的解的个数即可①当时,无解有且仅有一个零点②当时,为方程的解有,共个零点③当时,(i)若,即时,为方程的解有,共个零点(ii)若,即时,的解为:有且仅有一个零点(iii)若,即时,,方程无解有且仅有一个零点综上所述:当或时,有个零点;当时,有个零点【题目点拨】本题考查函数对称性的判断、函数零点个数的讨论.解决本题中零点个数问题的关键是能够将问题转化为方程根的个数的讨论,从而根据的不同范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 克孜勒苏职业技术学院《移动应用开发A》2023-2024学年第一学期期末试卷
- 江苏联合职业技术学院《全球卫生》2023-2024学年第一学期期末试卷
- 湖南农业大学《数字视频处理》2023-2024学年第一学期期末试卷
- 湖北孝感美珈职业学院《公共部门人力资源管理实验》2023-2024学年第一学期期末试卷
- 【物理】《功率》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 高考物理总复习《电场》专项测试卷含答案
- 重庆文理学院《建筑设计二》2023-2024学年第一学期期末试卷
- 重庆工程职业技术学院《数字化设计与制造双语》2023-2024学年第一学期期末试卷
- 浙江经济职业技术学院《太极拳》2023-2024学年第一学期期末试卷
- 中国美术学院《电工与电子技术(B)》2023-2024学年第一学期期末试卷
- 光伏发电并网申办具体流程
- 基本药物制度政策培训课件
- 2025年中国华能集团限公司校园招聘高频重点提升(共500题)附带答案详解
- 2023年某保险公司春节经营教材
- 刘都才-南方水稻田杂草发生动态及防控技术
- 全自动化学发光分析仪操作规程
- 深蓝的故事(全3册)
- GB/T 42461-2023信息安全技术网络安全服务成本度量指南
- 职校开学第一课班会PPT
- 央国企信创白皮书 -基于信创体系的数字化转型
- GB/T 36964-2018软件工程软件开发成本度量规范
评论
0/150
提交评论