2024届浙江省浙东北联盟数学高二下期末质量跟踪监视试题含解析_第1页
2024届浙江省浙东北联盟数学高二下期末质量跟踪监视试题含解析_第2页
2024届浙江省浙东北联盟数学高二下期末质量跟踪监视试题含解析_第3页
2024届浙江省浙东北联盟数学高二下期末质量跟踪监视试题含解析_第4页
2024届浙江省浙东北联盟数学高二下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省浙东北联盟数学高二下期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.二项式展开式中的第二项系数是8,则它的第三项的二项式系数为()A.24 B.18 C.6 D.162.已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率乘积的最小值为()A. B. C. D.3.若全集U={1,2,3,4}且∁UA={2,3},则集合A的真子集共有()A.3个 B.5个 C.7个 D.8个4.已知函数f(x)=2x-1,(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是()A. B. C. D.5.对于函数,有下列结论:①在上单调递增,在上单调递减;②在上单调递减,在上单调递增;③的图象关于直线对称;④的图象关于点对称.其中正确的是()A.①③ B.②④ C.②③ D.②③④6.已知双曲线的实轴长为16,左焦点分别为,是双曲线的一条渐近线上的点,且,为坐标原点,若,则双曲线的离心率为()A. B. C. D.7.设集合A={1,2,3,4},B={﹣4,﹣3,1},则A∩B=()A.{1,﹣3} B.{1,﹣4} C.{3} D.{1}8.若直线:(为参数)经过坐标原点,则直线的斜率是A. B.C.1 D.29.下列不等式成立的是()A. B. C. D.10.下列说法正确的是()A.若命题均为真命题,则命题为真命题B.“若,则”的否命题是“若”C.在,“”是“”的充要条件D.命题“”的否定为“”11.定义在区间上的函数的图象如图所示,以为顶点的△ABC的面积记为函数,则函数的导函数的大致图象为()A. B. C. D.12.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:甲预测说:获奖者在乙、丙、丁三人中;乙预测说:我不会获奖,丙获奖丙预测说:甲和丁中有一人获奖;丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是()A.甲和丁B.乙和丁C.乙和丙D.甲和丙二、填空题:本题共4小题,每小题5分,共20分。13.设定义域为的偶函数满足,当时,,若关于的方程恰有两个根,则实数的取值范围为__________.14.若函数为偶函数,则.15.已知为第二象限角,,则____________.16.若椭圆上的点到焦点的距离的最小值为5,最大值为15,则椭圆短轴长为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与直线(为参数,)交于点,与曲线交于点(异于极点),且,求.18.(12分)已知函数(Ⅰ)求的单调区间;(Ⅱ)求在区间上的最值.19.(12分)已知函数,且函数在和处都取得极值.(1)求,的值;(2)求函数的单调递增区间.20.(12分)已知函数.(1)求的单调区间和极值;(2)若直线是函数图象的一条切线,求的值.21.(12分)已知数列,…的前项和为.(1)计算的值,根据计算结果,猜想的表达式;(2)用数学归纳法证明(1)中猜想的表达式.22.(10分)已知函数.(1)当时,求函数在上的最大值;(2)令,若在区间上为单调递增函数,求的取值范围;(3)当时,函数的图象与轴交于两点,且,又是的导函数.若正常数满足条件.证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由题意可得:,∴,解得.它的第三项的二项式系数为.故选:C.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.2、B【解题分析】设椭圆的长半轴长为,双曲线的实半轴常为,故选B.3、A【解题分析】

由题意首先确定集合A,然后由子集个数公式求解其真子集的个数即可.【题目详解】由题意可得:,则集合A的真子集共有个.本题选择A选项.【题目点拨】本题主要考查补集的定义,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.4、C【解题分析】

对a分a=0,a<0和a>0讨论,a>0时分两种情况讨论,比较两个函数的值域的关系,即得实数a的取值范围.【题目详解】当a=0时,函数f(x)=2x-1的值域为[1,+∞),函数的值域为[0,++∞),满足题意.当a<0时,y=的值域为(2a,+∞),y=的值域为[a+2,-a+2],因为a+2-2a=2-a>0,所以a+2>2a,所以此时函数g(x)的值域为(2a,+∞),由题得2a<1,即a<,即a<0.当a>0时,y=的值域为(2a,+∞),y=的值域为[-a+2,a+2],当a≥时,-a+2≤2a,由题得.当0<a<时,-a+2>2a,由题得2a<1,所以a<.所以0<a<.综合得a的范围为a<或1≤a≤2,故选C.【题目点拨】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、C【解题分析】

将原函数的导数求出来,分析其符号即可得出原函数的单调性,又,故函数的图象关于直线对称【题目详解】由得令得当时,,原函数为增函数当时,,原函数为减函数,故②正确因为所以函数的图象关于直线对称,故③正确故选:C【题目点拨】本题考查的是利用导数研究函数的单调性及函数的对称性,属于中档题.6、A【解题分析】由于焦点到渐近线的距离为,故,依题意有,所以离心率为.【题目点拨】本小题主要考查直线和双曲线的位置关系,考查双曲线渐近线的几何性质,考查三角形的面积公式和双曲线离心率的求法.设双曲线的焦点为,双曲线的渐近线为,故双曲线焦点到渐近线的距离为,故焦点到渐近线的距离为.7、D【解题分析】

利用集合的交集的运算,即可求解.【题目详解】由题意,集合,所以,故选D.【题目点拨】本题主要考查了集合交集的运算,其中解答中熟记集合的交集运算是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解题分析】

先由参数方程消去参数,再由直线过原点,即可得出结果.【题目详解】直线方程消去参数,得:,经过原点,代入直线方程,解得:,所以,直线方程为:,斜率为2.故选D【题目点拨】本题主要考查直线的参数方程,熟记参数方程与普通方程的互化即可,属于基础题型.9、B【解题分析】

利用指数函数与对数函数的单调性,即可得到判定,得出答案.【题目详解】由题意,指数函数时,函数是增函数,所以不正确,是正确的,又由对数函数是增函数,所以不正确;对数函数是减函数,所以不正确,故选B.【题目点拨】本题主要考查了指数函数以及对数函数的单调性的应用,其中熟记指数函数与对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解题分析】

利用复合命题的真假四种命题的逆否关系以及命题的否定,充要条件判断选项的正误即可.【题目详解】对于A:若命题p,¬q均为真命题,则q是假命题,所以命题p∧q为假命题,所以A不正确;

对于B:“若,则”的否命题是“若,则”,所以B不正确;

对于C:在△ABC中,“”⇔“A+B=”⇔“A=-B”⇒sinA=cosB,

反之sinA=cosB,A+B=,或A=+B,“C=”不一定成立,

∴C=是sinA=cosB成立的充分不必要条件,所以C不正确;

对于D:命题p:“∃x0∈R,x02-x0-5>0”的否定为¬p:“∀x∈R,x2-x-5≤0”,所以D正确.

故选D.【题目点拨】本题考查命题的真假的判断与应用,涉及充要条件,四种命题的逆否关系,命题的否定等知识,是基本知识的考查.11、D【解题分析】

连结AB后,AB长为定值,由C点变化得到三角形面积函数的增减性,从而得到面积函数的导数的正负,则答案可求.【题目详解】解:如图,△ABC的底边AB长一定,在点C由A到B的过程中,△ABC的面积由小到大再减小,然后再增大再减小,对应的面积函数的导数先正后负再正到负.且由原图可知,当C位于AB连线和函数f(x)的图象交点附近时,三角形的面积减或增较慢,故选D.【题目点拨】本题主要考查函数的单调性与其导函数的正负之间的关系,属于基础题.12、B【解题分析】

从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断【题目详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁答案选B【题目点拨】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据满足,得到的周期是4,再根据方程恰有两个根,转化为两个函数图象交点问题求解.【题目详解】因为满足,所以,所以函数的周期是4,又因为是偶函数,且当时,,作出的图象,如图所示:已知,所以,当时,,,当时,,,因为关于的方程恰有两个根,所以实数的取值范围为.故答案为:【题目点拨】本题主要考查函数与方程,还考查了数形结合的思想和运算求解的能力,属于中档题.14、1【解题分析】试题分析:由函数为偶函数函数为奇函数,.考点:函数的奇偶性.【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型.首先利用转化思想,将函数为偶函数转化为函数为奇函数,然后再利用特殊与一般思想,取.15、【解题分析】

根据同角三角函数平方关系和的范围可求得,根据同角三角函数商数关系可求得结果.【题目详解】为第二象限角,,,由得:,.故答案为:.【题目点拨】本题考查根据同角三角函数平方关系和商数关系求解三角函数值的问题,属于基础题.16、【解题分析】

由题意得到关于a,b的方程组,求解方程组即可确定椭圆的短轴长度.【题目详解】不妨设椭圆方程为:,由题意可得,解得,则椭圆的短轴长度为:.故答案为:.【题目点拨】本题主要考查椭圆的几何性质,方程的数学思想,椭圆短轴的定义与计算等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解题分析】分析:(1)根据极坐标和直角坐标方程的转化,可直接求得直角坐标方程。(2)将直线参数方程转化为极坐标方程,将代入曲线C和直线方程,求得两个值,根据即可求出m的值。详解:(1)∵,∴,∴,故曲线的直角坐标方程为.(2)由(为参数)得,故直线(为参数)的极坐标方程为.将代入得,将代入,得,则,∴.点睛:本题考查了极坐标、参数方程与直角坐标方程的转化应用,主要是记住转化的公式,属于简单题。18、(Ⅰ)增区间为(1,),(-),减区间为(-1,1);(Ⅱ)最小值为,最大值为【解题分析】试题分析:(Ⅰ)首先求函数的导数,然后解和的解集;(Ⅱ)根据上一问的单调区间,确定函数的端点值域极值,其中最大值就是函数的最大值,最小的就是函数的最小值.试题解析:(Ⅰ)根据题意,由于因为>0,得到x>1,x<-1,故可知在上是增函数,在上是增函数,而则,故在上是减函数(Ⅱ)当时,在区间取到最小值为.当时,在区间取到最大值为.考点:导数的基本运用19、(1),;(2).【解题分析】

(1)易得和为导函数的两个零点,代入计算即可求得.(2)求导分析的解集即可.【题目详解】(1)∵.∴,∵函数在和处都取得极值,故和为的两根.故.即,(2)由(1)得故当,即时,即,解得或.∴函数的单调递增区间为.【题目点拨】本题主要考查了根据极值点求解参数的问题以及求导分析函数单调增区间的问题.需要根据题意求导,根据极值点为导函数的零点以及导函数大于等于0则原函数单调递增求解集即可.属于中档题.20、(1)极小值为,极大值为;(2)或【解题分析】

(1)直接利用导数求函数f(x)的单调区间和极值.(2)设切点为,再根据求得,再求b的值.【题目详解】(1)因为令=0,得,解得=或=1.1-0+0-↘极小值↗极大值↘所以的单调递增区间为,单调递减区间为,极小值为,极大值为.(2)因为,直线是的切线,设切点为,则,解得,当时,,代入直线方程得,当时,,代入直线方程得.所以或.【题目点拨】(1)本题主要考查利用导数求函数的单调区间和极值,考查利用导数求曲线的切线方程,意在考查学生对这些知识的掌握水平和分析推理能力.(2)与曲线的切线方程有关的问题,如果不知道切点,一般设切点坐标,再解答.21、(1),(2)见解析【解题分析】分析:(1)计算可求得,由此猜想的表达式;

(2)利用数学归纳法,先证明当时,等式成立,再假设当时,等式成立,即,去证明当时,等式也成立即可.详解:(I)猜想(II)①当时,左边=,右边=,猜想成立.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论