




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥中学科大附中2023年数学九上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图1,点从的顶点出发,沿匀速运动到点,图2是点运动时,线段的长度随时间变化的关系图象,其中为曲线部分的最低点,则的面积为()A. B. C. D.2.如图,在⊙O中,AB⊥OC,垂足为点D,AB=8,CD=2,若点P是优弧上的任意一点,则sin∠APB=()A. B. C. D.3.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A.1个 B.2个 C.3个 D.4个4.从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是()A. B. C. D.5.如图所示,在中,与相交于点,为的中点,连接并延长交于点,则与的面积比值为()A. B. C. D.6.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B. C.π﹣4 D.7.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=9508.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离 B.相切C.相交 D.相离、相切、相交都有可能9.已知⊙O的半径为3cm,P到圆心O的距离为4cm,则点P在⊙O()A.内部 B.外部 C.圆上 D.不能确定10.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE11.在Rt△ABC中,∠C=900,∠B=2∠A,则cosB等于()A. B. C. D.12.150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是()A.1.5cm B.3cm C.6cm D.12cm二、填空题(每题4分,共24分)13.天水市某校从三名男生和两名女生中选出两名同学做为“伏羲文化节”的志愿者,则选出一男一女的概率为.14.如图,三个顶点的坐标分别为,以原点O为位似中心,把这个三角形缩小为原来的,可以得到,已知点的坐标是,则点的坐标是______.15.一个不透明的袋子中装有3个白球和若干个黑球,它们除颜色外,完全相同.从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.6,则可判断袋子中黑球的个数为______.16.已知点和关于原点对称,则a+b=____.17.如图,将Rt△ABC绕着顶点A逆时针旋转使得点C落在AB上的C′处,点B落在B′处,联结BB′,如果AC=4,AB=5,那么BB′=_____.18.点A(﹣2,3)关于原点对称的点的坐标是_____.三、解答题(共78分)19.(8分)某公司2017年产值2500万元,2019年产值3025万元(1)求2017年至2019年该公司产值的年平均增长率;(2)由(1)所得结果,预计2020年该公司产值将达多少万元?20.(8分)孝感商场计划在春节前50天里销售某品牌麻糖,其进价为18元/盒.设第天的销售价格为(元/盒),销售量为(盒).该商场根据以往的销售经验得出以下的销售规律:①当时,;当时,与满足一次函数关系,且当时,;时,.②与的关系为.(1)当时,与的关系式为;(2)为多少时,当天的销售利润(元)最大?最大利润为多少?21.(8分)如图,是的直径,轴,交于点.(1)若点,求点的坐标;(2)若为线段的中点,求证:直线是的切线.22.(10分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(10分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.24.(10分)某公司2019年10月份营业额为万元,12月份营业额达到万元,求该公司两个月营业额的月平均增长率.25.(12分)(1)计算(2)解不等式组:26.定义:如图1,在中,把绕点逆时针旋转()并延长一倍得到,把绕点顺时针旋转并延长一倍得到,连接.当时,称是的“倍旋三角形”,边上的中线叫做的“倍旋中线”.特例感知:(1)如图1,当,时,则“倍旋中线”长为______;如图2,当为等边三角形时,“倍旋中线”与的数量关系为______;猜想论证:(2)在图3中,当为任意三角形时,猜想“倍旋中线”与的数量关系,并给予证明.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据图象可知点M在AB上运动时,此时AM不断增大,而从B向C运动时,AM先变小后变大,从而得出AC=AB,及时AM最短,再根据勾股定理求出时BM的长度,最后即可求出面积.【详解】解:∵当时,AM最短∴AM=3∵由图可知,AC=AB=4∴当时,在中,∴∴故选:C.【点睛】本题考查函数图像的认识及勾股定理,解题关键是将函数图像转化为几何图形中各量.2、B【分析】如图,连接OA,OB.设OA=OB=x.利用勾股定理构建方程求出x,再证明∠APB=∠AOD即可解决问题.【详解】如图,连接OA,OB.设OA=OB=x.∵OC⊥AB,∴AD=DB=4,在Rt△AOD中,则有x2=42+(x﹣2)2,∴x=5,∵OA=OB,OD⊥AB,∴∠AOD=∠BOD,∵∠APB=∠AOB=∠AOD,∴sin∠APB=sin∠AOD==,故选:B.【点睛】考查了圆周角定理和解直角三角形等知识,解题的关键是熟练灵活运用其相关知识.3、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:从左数第一、四个是轴对称图形,也是中心对称图形.第二是轴对称图形,不是中心对称图形,第三个图形是中心对称图形不是轴对称图形.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的两位数是3的倍数的情况,再利用概率公式即可求得答案.【详解】画树状图得:
∵共有12种等可能的结果,组成的两位数是3的倍数的有4种情况,
∴组成的两位数是3的倍数的概率是:.故选:B【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5、C【分析】根据平行四边形的性质得到OB=OD,利用点E是OD的中点,得到DE:BE=1:3,根据同高三角形面积比的关系得到S△ADE:S△ABE=1:3,利用平行四边形的性质得S平行四边形ABCD=2S△ABD,由此即可得到与的面积比.【详解】在中,OB=OD,∵为的中点,∴DE=OE,∴DE:BE=1:3,∴S△ADE:S△ABE=1:3,∴S△ABE:S△ABD=1:4,∵S平行四边形ABCD=2S△ABD,∴与的面积比为3:8,故选:C.【点睛】此题考查平行四边形的性质,同高三角形面积比,熟记平行四边形的性质并熟练运用解题是关键.6、A【分析】先证得三角形OBC是等腰直角三角形,通过解直角三角形求得BC和BC边上的高,然后根据S阴影=S扇形OBC-S△OBC即可求得.【详解】∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴△OBC的BC边上的高为:,∴∴S阴影=S扇形OBC-S△OBC=,故选:A.【点睛】本题考查了扇形的面积公式:(n为圆心角的度数,R为圆的半径).也考查了等腰直角三角形三边的关系和三角形的面积公式.7、D【解析】设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选D.8、A【解析】先求出点P到x轴的距离,再根据直线与圆的位置关系得出即可.【详解】解:点P(-2,3)到x轴的距离是3,3>2,所以圆P与轴的位置关系是相离,故选A.【点睛】本题考查了坐标与图形的性质和直线与圆的位置关系等知识点,能熟记直线与圆的位置关系的内容是解此题的关键.9、B【解析】平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r点P在⊙O外;d=r点P在⊙O上;d<r点P在⊙O内.【详解】∵⊙O的半径为3cm,点P到圆心O的距离为4cm,4cm>3cm,∴点P在圆外.故选:B.【点睛】本题考查平面上的点距离圆心的位置关系的问题.10、D【解析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,AE=BE,而点D不一定是OE的中点,故D错误.【详解】∵OD⊥AB,∴由垂径定理知,点D是AB的中点,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=12∠AOB,由圆周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.11、B【详解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=故选B【点睛】本题考查三角函数值,熟记特殊角三角函数值是解题关键.12、C【分析】根据150°的圆心角所对的弧长是5πcm,代入弧长公式即可得到此弧所在圆的半径.【详解】设此弧所在圆的半径为rcm,∵150°的圆心角所对的弧长是5πcm,∴,解得,r=6,故选:C.【点睛】本题考查弧长的计算,熟知弧长的计算公式是解题的关键.二、填空题(每题4分,共24分)13、【解析】试题分析:画树状图得:∵共有20种等可能的结果,选出一男一女的有12种情况,∴选出一男一女的概率为:.故答案为.考点:列表法与树状图法求概率14、(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2).15、2【分析】由摸到白球的频率稳定在0.6附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【详解】解:设黑球个数为:x个,∵摸到白色球的频率稳定在0.6左右,∴口袋中得到白色球的概率为0.6,∴,解得:x=2,故黑球的个数为2个.故答案为2.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.16、【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得a-1+2=0,b-1+1=0,再解方程即可求得a、b的值,再代入计算即可.【详解】∵点和关于原点对称,∴a-1+2=0,b-1+1=0,∴a=-1,b=0,∴a+b=-1.故答案是:-1.【点睛】考查了关于原点对称的点的坐标特点,解题关键是运用了两个点关于原点对称时,它们的坐标符号相反.17、【分析】根据旋转的性质和勾股定理,在Rt△BC′B′中,求出BC′,B′C′即可解决问题.【详解】解:在Rt△ABC中,∵AC=4,AB=5,∠C=90°,∴BC===3,∵AC=AC′=4,BC=B′C′=3,∴BC′=AB=AC′=5﹣4=1,∵∠BC′B′=90°,∴BB′===,故答案为.【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质和利用勾股定理解直角三角形是解决此题的关键.18、(2,﹣3)【分析】根据两个点关于原点对称,它们的坐标符号相反求解即可.【详解】点P(-2,3)关于原点对称的点的坐标为(2,-3),故本题正确答案为(2,-3).【点睛】本题考查了关于原点对称的性质,掌握两个点关于原点对称,它们的坐标符号相反是解决本题的关键.三、解答题(共78分)19、(1)这两年产值的平均增长率为;(2)预计2020年该公产值将达到3327.5万元.【分析】(1)先设出增长率,再根据2019年的产值列出方程,解方程即可得出答案;(2)根据(1)中求出的增长率乘以2019年的产值,再加上2019年的产值,即可得出答案.【详解】解:设增长率为,则2018年万元,2019年万元.则,解得,或(不合题意舍去).答:这两年产值的平均增长率为.(2)(万元).故由(1)所得结果,预计2020年该公产值将达到3327.5万元.【点睛】本题考查的是一元二次方程的应用——增长率问题,解题关键是根据题意列出方程.20、(1);(2)32,2646元.【分析】(1)设一次函数关系式为,将“当时,;时,”代入计算即可;(2)根据利润等于单件利润乘以销售量分段列出函数关系式,再根据一次函数及二次函数的性质得出最大利润即可.【详解】解:(1)设一次函数关系式为∵当时,;时,,即,解得:∴(2)∴当时,∵60>0∴当x=30时,W最大=2400(元)当时∴当x=32时,当天的销售利润W最大,为2646元.2646>2400∴故当x=32时,当天的销售利润W最大,为2646元.【点睛】本题考查了二次函数的实际应用,根据题意列出函数关系式并熟知函数的基本性质是解题关键.21、(1);(2)见解析.【分析】(1)由A、N两点坐标可求AN的长,利用,,由勾股定理求BN即可,(2)连接MC,NC,由是的直径,可得,D为线段的中点,由直角三角形斜边中线CD的性质得ND=CD,由此得,由半径知,利用等式的性质得∠MCD=∠MND=90º,可证直线是的切线.【详解】的坐标为,,,,由勾股定理可知:,;连接MC,NC,是的直径,,,为线段的中点,,,,,,,即,直线是的切线.【点睛】本题考查点的坐标与切线问题,掌握用两点坐标求线段的长,能在直角三角形中,利用30º角求线段,会利用勾股定理解决问题,会利用半径证角等,利用直角三角形的斜边中线解决角等与线段相等问题,利用等式的性质证直角等知识.22、(1)详见解析;(2).【分析】(1)方法1、先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;
方法2、判断出OP是CD的垂直平分线,即可得出结论;
(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【详解】解:(1)方法1、连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP(HL),∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;方法2、∵PD,PC是⊙O的切线,∴PD=PC,∵OD=OC,∴P,O在CD的中垂线上,∴OP⊥CD(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点睛】本题考查圆周角定理、切线的性质、全等三角形的判定(HL)和性质和锐角三角函数,解题的关键是掌握圆周角定理、切线的性质、全等三角形的判定(HL)和性质和锐角三角函数.23、(1)1:3;(1)见解析;(3)5:3:1.【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 境外地质勘探项目地质工程师派遣协议
- 航运企业船舶保险事故赔偿合同
- 高清VR电竞赛事直播及赛事版权转让合同
- 二年级数学融合艺术教学计划
- 2025春季幼儿园科技探索计划
- 2025年计算机系统配套用各种消耗品项目申请报告模范
- 2025年游学培训项目申请报告
- 医疗保险理赔安全管理措施
- 2025八年级生物下册-家长沟通计划
- 2025年光刻胶专用化学品项目立项申请报告模范
- 艾里逊自动变速箱针脚图PPT通用课件
- 交管12123驾照学法减分题库及答案共155题(完整版)
- 5Why分析法经典培训(43页)
- 食品物性学-第二章 食品力学性质和流变学基础
- 2018二建继续教育(市政公用工程)试题库(有答案解析)
- 2025年退役士兵转业军人2025年考试试题题库完整版
- 斜屋面瓦安装施工及方案
- 钢楼梯钢结构施工方案
- 用友T+固定资产条码-(二维码)盘点解决方案
- 手足口病课件.ppt
- 青岛市市区公共服务设施配套标准及规划导则
评论
0/150
提交评论