




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省亳州一中学南学校国际部2023-2024学年九年级数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.双曲线y=在第一、三象限内,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<12.已知二次函数(是实数),当自变量任取,时,分别与之对应的函数值,满足,则,应满足的关系式是()A. B.C. D.3.如图,在中,若,则的长是()A. B. C. D.4.已知x=-1是方程2x2+ax-5=0的一个根,则a的值为()A.-3 B.-4 C.3 D.75.下列方程中,是一元二次方程的是()A. B.C. D.6.一元二次方程x2+x+1=0的根的情况是().A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.以上说法都不对7.下列说法正确的是()A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B.甲、乙两人跳远成绩的方差分别为,,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5D.可能性是1%的事件在一次试验中一定不会发生8.二次函数,当时,则()A. B. C. D.9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:2510.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.“概率为1的事件”是必然事件二、填空题(每小题3分,共24分)11.在中,若,则是_____三角形.12.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是_____.13.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).14.分解因式:x3﹣16x=______.15.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)16.在直角坐标平面内,抛物线在对称轴的左侧部分是______的.17.如图,在等腰直角三角形中,,点在轴上,点的坐标为(0,3),若点恰好在反比例函数第一象限的图象上,过点作轴于点,那么点的坐标为__________.18.点(﹣4,3)关于原点对称的点的坐标是_____.三、解答题(共66分)19.(10分)(1)计算:;(2)解方程.20.(6分)如图,在平面直角坐标系中,直线AB与y轴交于点,与反比例函数在第二象限内的图象相交于点.(1)求直线AB的解析式;(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点E,与y轴交于点D,求的面积;(3)设直线CD的解析式为,根据图象直接写出不等式的解集.21.(6分)如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO于点D.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.22.(8分)如图,在正方形中,为边的中点,点在边上,且,延长交的延长线于点.(1)求证:△∽△.(2)若,求的长.23.(8分)如图一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(n,﹣1),B(,﹣4)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)若点C坐标为(0,2),求△ABC的面积.24.(8分)画出如图所示几何体的三视图25.(10分)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,求图中阴影部分的面积.26.(10分)已知:如图,AE∥CF,AB=CD,点B、E、F、D在同一直线上,∠A=∠C.求证:(1)AB∥CD;(2)BF=DE.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据反比例函数的性质,由于图象在第一三象限,所以k-1>0,解不等式求解即可.【详解】解:∵函数图象在第一、三象限,∴k﹣1>0,解得k>1.故选:C.【点睛】本题考查了反比例函数的性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.2、D【解析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|>|x2-3|.【详解】抛物线的对称轴为直线x=-=3,∵y1>y2,∴点(x1,y1)比点(x2,y2)到直线x=3的距离要大,∴|x1-3|>|x2-3|.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.3、B【分析】根据平行线分线段成比例定理,先算出,可得,根据DE的长即可求得BC的长.【详解】解:∵,∴,∵,∴,∵,∴.【点睛】本题考查了平行线分线段成比例定理,由题意求得是解题的关键.4、A【解析】把x=-1代入方程计算即可求出a的值.【详解】解:把x=-1代入方程得:2-a-5=0,
解得:a=-1.
故选A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5、B【解析】根据一元二次方程的定义进行判断即可.【详解】A.属于多项式,错误;B.属于一元二次方程,正确;C.未知数项的最高次数是2,但不属于整式方程,错误;D.属于整式方程,未知数项的最高次数是3,错误.故答案为:B.【点睛】本题考查了一元二次方程的性质以及定义,掌握一元二次方程的定义是解题的关键.6、C【分析】先计算出根的判别式的值,根据的值就可以判断根的情况.【详解】=b2-4ac=1-4×1×1=-3∵-3<0∴原方程没有实数根故选:C.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解.7、C【分析】全面调查与抽样调查的优缺点:全面调查收集的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果数据的个数是偶数,中间两数的平均数就是中位数,一组数据中出现次数最多的数据叫做众数.【详解】解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为,,说明甲的跳远成绩比乙稳定,B错误;C.一组数据,,,的众数是,中位数是,正确;D.可能性是的事件在一次试验中可能会发生,D错误.故选C.【点睛】本题考查了统计的应用,正确理解概率的意义是解题的关键.8、D【分析】因为=,对称轴x=1,函数开口向下,分别求出x=-1和x=1时的函数值即可;【详解】∵=,∴当x=1时,y有最大值5;当x=-1时,y==1;当x=2时,y==4;∴当时,;故选D.【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.9、C【分析】由平行四边形的性质得出CD∥AB,进而得出△DEF∽△BAF,再利用相似三角形的性质可得出结果.【详解】∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴,∴.故选C.【点睛】本题考查了相似三角形的性质与判定及平行四边形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.10、D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为.故C错误;D.“概率为1的事件”是必然事件,正确.故选D.二、填空题(每小题3分,共24分)11、等腰【分析】根据绝对值和平方的非负性求出sinA和tanB的值,再根据锐角三角函数的特殊值求出∠A和∠B的角度,即可得出答案.【详解】∵∴,∴∠A=30°,∠B=30°∴△ABC是等腰三角形故答案为等腰.【点睛】本题考查的是特殊三角函数值,比较简单,需要牢记特殊三角函数值.12、3【详解】由三角形的重心是三角形三边中线的交点,根据中心的性质可得,G是将AB边上的中线分成2:1两个部分,所以重合部分的三角形与原三角形的相似比是1:3,所以重合部分的三角形面积与原三角形的面积比是1:9,因为原三角形的面积是所以27,所以重合部分三角形面积是3,故答案为:3.13、【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵两次测量的影长相差8米,∴=8,∴x=4,故答案为4.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.14、x(x+4)(x–4).【解析】先提取x,再把x2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分解即可.解:原式=x(x2﹣16)=x(x+4)(x﹣4),故答案为x(x+4)(x﹣4).15、不公平.【分析】先根据题意画出树状图,然后根据概率公式求解即可.【详解】画出树状图如下:共有9种情况,积为奇数有4种情况所以,P(积为奇数)=即甲获胜的概率是,乙获胜的概率是所以这个游戏不公平.【点睛】解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.16、下降【分析】由抛物线解析式可求得其开口方向,再结合二次函数的增减性则可求得答案.【详解】解:∵在y=(x-1)2-3中,a=1>0,
∴抛物线开口向上,
∴在对称轴左侧部分y随x的增大而减小,即图象是下降的,
故答案为:下降.【点睛】本题主要考查二次函数的性质,利用二次函数的解析式求得抛物线的开口方向是解题的关键.17、(5,2)【分析】由∠BAC=90°,可得△ABO≌△CAD,利用全等三角形的性质即可求出点C坐标.【详解】解:∵∠BAC=90°∴∠BAO+∠ABO=∠BAO+∠CAD∴∠ABO=∠CAD,又∵轴,∴∠CDA=90°在△ABO与△CAD中,∠ABO=∠CAD,∠AOB=∠CDA,AB=CA,∴△ABO≌△CAD(AAS)∴OB=AD,设OA=a()∵B(0,3)∴AD=3,∴点C(a+3,a),∵点C在反比例函数图象上,∴,解得:或(舍去)∴点C(5,2),故答案为(5,2)【点睛】本题考查了反比例函数与等腰直角三角形相结合的题型,灵活运用几何知识及反比例函数的图象与性质是解题的关键.18、(4,﹣3)【解析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【详解】点(﹣4,3)关于原点对称的点的坐标是(4,﹣3).故答案为(4,﹣3).【点睛】本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数,比较简单.三、解答题(共66分)19、(1);(2)无解【分析】(1)先算开方,0指数幂,绝对值,再算加减;(2)两边同时乘以,去分母,再解整式方程.【详解】(1)解:原式==(2)解:两边同时乘以,得:经检验是原方程的增根,∴原方程无解.【点睛】考核知识点:解分式方程.把分式方程化为整式方程是关键.20、(1));(2)的面积为1;(3)或.【分析】(1)将点A(-1,a)代入反比例函数求出a的值,确定出A的坐标,再根据待定系数法确定出一次函数的解析式;(2)根据直线的平移规律得出直线CD的解析式为y=-x-2,从而求得D的坐标,联立方程求得交点C、E的坐标,根据三角形面积公式求得△CDB的面积,然后由同底等高的两三角形面积相等可得△ACD与△CDB面积相等;(3)根据图象即可求得.【详解】(1))∵点在反比例函数的图象上,∴,∴,∵点,∴设直线AB的解析式为,∵直线AB过点,∴,解得,∴直线AB的解析式为;(2)∵将直线AB向下平移9个单位后得到直线CD的解析式为,∴,∴,联立,解得或,∴,,连接AC,则的面积,由平行线间的距离处处相等可得与面积相等,∴的面积为1.(3)∵,,∴不等式的解集是:或.【点睛】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.21、(1)见解析;(2)AD=2.【分析】(1)作OE⊥AB,先由∠AOD=∠BAD求得∠ABD=∠OAD,再由∠BCO=∠D=90°及∠BOC=∠AOD求得∠OBC=∠OAD=∠ABD,最后证△BOC≌△BOE得OE=OC,依据切线的判定可得;(2)先求得∠EOA=∠ABC,在Rt△ABC中求得AC=8,AB=10,由切线长定理知BE=BC=6,AE=4,OE=3,继而得BO=3,根据相似三角形的性质即可得出结论.【详解】解:(1)过点O作OE⊥AB于点E,∵O为∠MBN角平分线上一点,∴∠ABD=∠CBD,又∵BC为⊙O的切线,∴AC⊥BC,∵AD⊥BO于点D,∴∠D=90°,∴∠BCO=∠D=90°,∵∠BOC=∠AOD,∴∠BAD+∠ABD=90°,∠AOD+∠OAD=90°,∵∠AOD=∠BAD,∴∠ABD=∠OAD,∴∠OBC=∠OAD=∠ABD,在△BOC和△BOE中,∵,∴△BOC≌△BOE(AAS),∴OE=OC,∵OE⊥AB,∴AB是⊙O的切线;(2)∵∠ABC+∠BAC=90°,∠EOA+∠BAC=90°,∴∠EOA=∠ABC,∵tan∠ABC=、BC=6,∴AC=BC•tan∠ABC=8,则AB=10,由(1)知BE=BC=6,∴AE=4,∵tan∠EOA=tan∠ABC=,∴,∴OE=3,OB==3,∵∠ABD=∠OBC,∠D=∠ACB=90°,∴△ABD∽△OBC,∴,即,∴AD=2.故答案为:AD=2.【点睛】本题主要考查了切线的判定与性质.解题的关键是掌握切线的判定,切线长定理,全等与相似三角形的判定与性质及解直角三角形的应用.22、(1)详见解析;(2)1.【分析】(1)先根据正方形的性质、直角三角形的性质得出,再加上一组直角相等,根据相似三角形的判定定理即可得证;(2)先根据正方形的性质、中点的性质求出AE的长,再根据勾股定理求出BE的长,最后根据相似三角形的性质、线段的和差即可得.【详解】(1)∵四边形ABCD为正方形,且;(2)∵四边形ABCD为正方形,点E为AD的中点在中,由(1)知,,即故的长为1.【点睛】本题考查了正方形的性质、勾股定理、相似三角形的判定定理与性质等知识点,较难的是题(2),由题(1)的结论联系到利用相似三角形的性质是解题关键.23、(1)y=﹣;(2)y=2x﹣5;(3).【分析】(1)把点B代入解析式求解即可;(2)求出A点的坐标,然后代入解析式求解即可;(3)求出点D的坐标,根据S△ABC=S△ACD﹣S△BCD求解即可;【详解】解:(1)∵一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(n,﹣1),B(,﹣4)两点.∴m=×(﹣4)=﹣2,∴反比例函数的解析式y=﹣;(2)把A(n,﹣1)代入y=﹣得﹣1=﹣,∴n=2,∴A(2,﹣1),∵次函数y=kx+b的图象经过A(2,﹣1),B(,﹣4),∴,解得:,∴一次函数解析式y=2x﹣5;(3)设一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年石材供应合同
- 2025工业区仓库租赁合同模板
- 2025建筑工程包工不包料合同范本
- 2025年的单身公寓租赁合同样本
- 2025年农产品种子购销合同
- 2025标准版简单个人租房合同示例
- 2025年反担保抵押合同范本
- 2025标准版城镇公寓买卖合同
- 2025标准木材采购合同范本
- 《我国气候特点》课件
- 2025年北京市三类人员安全员c3证考试题库及答案
- 急性冠脉综合征诊断及治疗课件
- (四调)武汉市2025届高中毕业生四月调研考试 地理试卷(含答案)
- 吹小号的天鹅试题及答案
- 数据库开发 试题及答案
- GB/T 45434.3-2025中国标准时间第3部分:公报
- 2024年郑州工业应用技术学院单招职业适应性测试题库附答案
- 农业合作社管理与运营模式试题及答案
- Unit 4 Clothes 单元整体(教学设计)-2024-2025学年人教精通版(2024)英语三年级下册
- 2025年版中等职业教育专业教学标准 710205 大数据技术应用
- 2025年中国城市轨道交通维修行业投资潜力分析及行业发展趋势报告
评论
0/150
提交评论