2024届自贡市重点中学九年级数学第一学期期末质量检测试题含解析_第1页
2024届自贡市重点中学九年级数学第一学期期末质量检测试题含解析_第2页
2024届自贡市重点中学九年级数学第一学期期末质量检测试题含解析_第3页
2024届自贡市重点中学九年级数学第一学期期末质量检测试题含解析_第4页
2024届自贡市重点中学九年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届自贡市重点中学九年级数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某盏路灯照射的空间可以看成如图所示的圆锥,它的高米,底面半径米,则圆锥的侧面积是多少平方米(结果保留).()A. B. C. D.2.如图,在▱ABCD中,F为BC的中点,延长AD至E,使DE:AD=1:3,连接FF交DC于点G,则DG:CG=()A.1:2 B.2:3 C.3:4 D.2:53.下列方程中,为一元二次方程的是()A.x=2 B.x+y=3 C. D.4.用长分别为3cm,4cm,5cm的三条线段可以围成直角三角形的事件是()A.必然事件B.不可能事件C.随机事件D.以上都不是5.在平面直角坐标系内,将抛物线先向右平移个单位,再向下平移个单位,得到一条新的抛物线,这条新抛物线的顶点坐标是()A. B. C. D.6.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c=0有两个相等的实数根.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个7.将二次函数化成的形式为()A. B.C. D.8.在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4 B.6 C.8 D.109.反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A.0 B.1 C.2 D.310.已知点(3,﹣4)在反比例函数的图象上,则下列各点也在该反比例函数图象上的是()A.(3,4) B.(﹣3,﹣4) C.(﹣2,6) D.(2,6)11.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是().A.3 B.4 C.6 D.812.已知二次函数y=kx2-7x-7的图象与x轴没有交点,则k的取值范围为()A.k> B.k≥且k≠0 C.k< D.k>且k≠0二、填空题(每题4分,共24分)13.如图,抛物线与轴交于两点,是以点为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是________.14.将函数y=5x2的图象向左平移2个单位,再向上平移3个单位,所得抛物线对应函数的表达式为__________.15.某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x,则满足x的方程是______.16.在上午的某一时刻身高1.7米的小刚在地面上的影长为3.4米,同时一棵树在地面上的影子长12米,则树的高度为_____米.17.抛物线的开口方向是_____.18.如图,平行四边形中,,,,点E在AD上,且AE=4,点是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接DG,则线段DG的最小值为____________________.三、解答题(共78分)19.(8分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.20.(8分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y。(1)计算由x、y确定的点(x,y)在函数y=-x+5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.21.(8分)定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;(2)求除点(2,0)外△ABC所有自相似点的坐标;(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.22.(10分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.23.(10分)计算或解方程:(1)(2)24.(10分)知识改变世界,科技改变生活。导航设备的不断更新方便了人们的出行。如图,某校组织学生乘车到蒲江茶叶基地C地进行研学活动,车到达A地后,发现C地恰好在A地的正东方向,且距A地9.1千米,导航显示车辆应沿南偏东60°方向行驶至B地,再沿北偏东53°方向行驶一段距离才能到达C地,求B、C两地的距离(精确到个位)(参考数据)25.(12分)已知抛物线(1)抛物线经过原点时,求的值;(2)顶点在轴上时,求的值.26.如图,抛物线与轴交于两点,与轴交于点,设抛物线的顶点为点.(1)求该抛物线的解析式与顶点的坐标.(2)试判断的形状,并说明理由.(3)坐标轴上是否存在点,使得以为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据勾股定理求得AB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,OB=6米,∴AB=10米,

∴圆锥的底面周长=2×π×6=12π米,

∴S扇形=lr=×12π×10=60π(米2).

故选:A.【点睛】本题考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,熟知圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.2、B【分析】由平行四边形的性质可得AD=BC,AD∥BC,可证△DEG∽△CFG,可得=.【详解】∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵F为BC的中点,∴CF=BF=BC=AD,∵DE:AD=1:3,∴DE:CF=2:3,∵AD∥BC,∴△DEG∽△CFG,∴=.故选:B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质及相似三角形的判定与性质.3、C【解析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、x=2是一元一次方程,故A错误;B、x+y=3是二元一次方程,故B错误;C、是一元二次方程,故C正确;D、是分式方程,故D错误;故选:C.【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是关键.4、A【解析】试题解析:用长为3cm,4cm,5cm的三条线段一定能围成一个三角形,则该事件是必然事件.

故选A.5、B【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.【详解】抛物线的顶点坐标为(0,−1),∵向右平移个单位,再向下平移个单位,∴平移后的抛物线的顶点坐标为(2,−4).故选B.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.6、B【分析】先从二次函数图像获取信息,运用二次函数的性质一—判断即可.【详解】解:∵二次函数与x轴有两个交点,∴b2-4ac>0,故①错误;∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,且抛物线开口向下,∴当x=1时,有y=a+b+c<0,故②正确;∵函数图像的顶点为(-1,2)∴a-b+c=2,又∵由函数的对称轴为x=-1,∴=-1,即b=2a∴a-b+c=a-2a+c=c-a=2,故③正确;由①得b2-4ac>0,则ax2+bx+c=0有两个不等的实数根,故④错误;综上,正确的有两个.故选:B.【点睛】本题考查了二次函数的图像与系数的关系,从二次函数图像上获取有用信息和灵活运用数形结合思想是解答本题的关键.7、C【分析】利用配方法即可将二次函数转化为顶点式.【详解】故选:C.【点睛】本题主要考查二次函数的顶点式,掌握配方法是解题的关键.8、C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选C.【点睛】本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.9、A【解析】试题分析:因为y=的图象,在每个象限内,y的值随x值的增大而增大,所以k-1<0,k<1.故选A.考点:反比例函数的性质.10、C【解析】试题解析:∵反比例函数图象过点(3,-4),即k=−12,A.∴此点不在反比例函数的图象上,故本选项错误;B.∴此点不在反比例函数的图象上,故本选项错误;C.∴此点在反比例函数的图象上,故本选项正确.D.∴此点不在反比例函数的图象上,故本选项错误;故选C.11、B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12、C【分析】根据二次函数图像与x轴没有交点说明,建立一个关于k的不等式,解不等式即可.【详解】∵二次函数的图象与x轴无交点,∴即解得故选C.【点睛】本题主要考查一元二次方程根的判别式和二次函数图像与x轴交点个数的关系,掌握根的判别式是解题的关键.二、填空题(每题4分,共24分)13、3.1【分析】连接BP,如图,先解方程=0得A(−4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.【详解】连接BP,如图,当y=0时,=0,解得x1=4,x2=−4,则A(−4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC=∴BP′=1+2=7,∴线段OQ的最大值是3.1,故答案为:3.1.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.14、y=5(x+2)2+3【分析】根据二次函数平移的法则求解即可.【详解】解:由二次函数平移的法则“左加右减”可知,二次函数y=5x2的图象向左平移2个单位得到y=,由“上加下减”的原则可知,将二次函数y=的图象向上平移3个单位可得到函数y=,故答案是:y=.【点睛】本题主要考查二次函数平移的法则,其中口诀是:“左加右减”、“上加下减”,注意数字加减的位置.15、.【分析】根据降价后的售价=降价前的售价×(1-平均每次降价的百分率),可得降价一次后的售价是,降价一次后的售价是,再根据经过连续两次降价后售价为260元即得方程.【详解】解:由题意可列方程为故答案为:.【点睛】本题考查一元二次方程的实际应用,增长率问题,解题的关键是读懂题意,找到等量关系,正确列出方程,要注意增长的基础.16、1【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.利用相似比和投影知识解题,【详解】∵,∴,即∴树高为1m故答案为:1.【点睛】利用相似比和投影知识解题,在某一时刻,实际高度和影长之比是一定的,此题就用到了这一知识点.17、向上【分析】根据二次项系数的符号即可确定答案.【详解】其二次项系数为2,且二次项系数:2>0,所以开口方向向上,故答案为:向上.【点睛】本题考查了二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0)图象的开口方向与a的值有关是解题的关键.18、【分析】结合已知条件,作出辅助线,通过全等得出ME=GN,且随着点F的移动,ME的长度不变,从而确定当点N与点D重合时,使线段DG最小.【详解】解:如图所示,过点E做EM⊥AB交BA延长线于点M,过点G作GN⊥AD交AD于点N,∴∠EMF=∠GNE=90°∵四边形ABCD是平行四边形,BC=12∴AD∥BC,AD=BC=12,∴∠BAD=120°,∴∠AFE+∠AEF=60°又∵EG为EF逆时针旋转120°所得,∴∠FEG=120°,EF=EG,∴∠AEF+∠GEN=60°,∴∠AFE=∠GEN,∴在△EMF与△GNE中,∠AFE=∠GEN,∠EMF=∠GNE=90°,EF=EG,∴△EMF≌△GNE(AAS)∴ME=GN又∵∠EAM=∠B=60°,AE=4,∴∠AEM=30°,,,∴,∴当点N与点D重合时,使线段DG最小,如图所示,此时,故答案为:.【点睛】本题考查了平行四边形的性质、旋转的性质、全等三角形的构造、几何中的动点问题,解题的关键是作出辅助线,得到全等三角形,并发现当点N与点D重合时,使线段DG最小.三、解答题(共78分)19、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;

(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;

(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【详解】(1)设抛物线解析式为,当时,,点的坐标为,将点坐标代入解析式得,解得:,抛物线的函数表达式为;(2)由抛物线的对称性得,,当时,,矩形的周长,,,,当时,矩形的周长有最大值,最大值为;(3)如图,当时,点、、、的坐标分别为、、、,矩形对角线的交点的坐标为,直线平分矩形的面积,点是和的中点,,由平移知,是的中位线,,所以抛物线向右平移的距离是1个单位.【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.20、(1)13;(2)不公平,规则见解析【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果,再得出得点(x,y)在函数y=-x+5的图象上的情况,利用概率公式即可求得答案;

(2)首先分别求得x、y满足xy>6则小明胜,x、y满足xy<6则小红胜的概率,比较概率大小,即可得这个游戏是否公平;公平的游戏规则:只要概率相等即可.【详解】(1)画树状图得:∵共有12种等可能的结果,其中在函数y=−x+5的图象上的有4种:(1,4),(2,3),(3,2),(4,1),∴点(x,y)在函数y=−x+5的图象上的概率为:412(3)这个游戏不公平.理由:∵x、y满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x、y满足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况.∴P(小明胜)=412=13,P(∴这个游戏不公平。公平的游戏规则为:若x、y满足xy≥6则小明胜,若x、y满足xy<6则小红胜.【点睛】考查游戏公平性,一次函数图象上点的坐标特征,列表法与树状图法,掌握概率=所求情况数与总情况数之比是解题的关键.21、(1)见解析;(2)△CPA∽△CAB,此时P(,);△BPA∽△BAC,此时P(,);(3)S(3,-2)是△GBD与△GBC公共的自相似点,见解析【分析】(1)利用:两边对应成比例且夹角相等,证明△APC∽△CAB即可;(2)分类讨论:△CPA∽△CAB和△BPA∽△BAC,分别求得P点的坐标;(3)先求得点D的坐标,说明点G(5,)、S(3,-2)在直线AC:上,证得△ABC△SGB,再证得△GBS∽△GCB,说明点S是△GBC的自相似点;又证得△DBG△DSB,说明点S是△GBD的自相似点.从而说明S(3,-2)是△GBD与△GBC公共的自相似点.【详解】(1)如图,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠CAB,∴△APC∽△CAB,故点P是△ABC的自相似点;(2)点P只能在BC上,①△CPA∽△CAB,如图,由(1)得:AC,AB,又,∵△CPA∽△CAB,∴,∴,∴,过点P作PD∥y轴交轴于D,∴,,∴,,∴,,P点的坐标为(,)②△BPA∽△BAC,如图,由前面获得的数据:AB,,∵△BPA∽△BAC,∴,∴,∴,过点P作PE∥y轴交轴于E,∴,∴,∴,,∴,P点的坐标为(,);(3)存在.当点G的坐标为(5,)时,△GBD与△GBC公共的自相似点为S(3,).理由如下:如图:设直线AC的解析式为:,

∴,解得:,∴直线AC的解析式为:,过点D作DE⊥x轴于点E,

∵∠CBO+∠DBE=90,∠EDB+∠DBE=90,∴∠CBO=∠EDB,∴,∴,设BE=a,则DE=3a,∴OE=3-a,∴点D的坐标为(3-a,-3a),∵点D在直线AC上,∴,解得:,∴点D的坐标为(,);如下图:当点G的坐标为(5,)时,△GBD与△GBC公共的自相似点为S(3,).直线AC的解析式为:,

∵,,∴点G、点S在直线AC上,过点G作GH⊥x轴于点H,∵,∴,由S(3,)、B(3,0)知BS⊥x轴,∴△AED、△ABS、△AHG为等腰直角三角形,∵D(,),S,G(,∴,,B,,,,,,,,在△ABC和△SGB中∵,,∴,∵∴∴△ABC△SGB∴∠SBG=∠BCA,又∠SGB=∠BGC,∴△GBS∽△GCB,∴点S是△GBC的自相似点;在△DBG和△DSB中,∵,,∴,且,∴△DBG△DSB;∴点S是△GBD的自相似点.∴S(3,)是△GBD与△GBC公共的自相似点.【点睛】本题主要考查了相似三角形的判定,涉及的知识有:平面内点的特征、待定系数法求直线的解析式、等腰直角三角形的判定和性质、勾股定理,读懂题意,理清“自相似点”的概念是解题的关键.22、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=1.【解析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.【详解】(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==1,∵AB∥x轴,且AB=OA=1,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),(负值舍去),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=1.【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.23、(1)5-;(2)x1=-2,x2=【分析】(1)利用完全平方差公式以及化简二次根式和代入特殊三角函数进行计算即可;(2)由题意观察原方程,可用因式分解法中十字相乘法或者公式法求解.【详解】(1)计算:解:原式=7-4++2××=7-4+2-2+=5-.(2)解法一:(2x-3)(x+2)=02x-3=0或x+2=0,x1=-2,x2=.解法二:a=2,b=1,c=-6,△=b2-4ac=12-4×2×(-6)=49,x=,x1=-2,x2=.【点睛】本题主要考查用因式分解法解一元二次方程以及实数的综合运算,涉及的知识点有特殊角的三角形函数值、完全平方差公式以及二次根式的分母有理化等.24、5千米【分析】作BD⊥AC,设AD=x,在Rt△ABD中求得BD,在Rt△BCD中求得CD,由A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论