




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省百所重点高中2024届数学高二下期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义运算,则函数的图象是().A. B.C. D.2.设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.-15x4 B.15x4 C.-20ix4 D.20ix43.已知抛物线y2=8x的焦点和双曲线A.3 B.3 C.5 D.54.已知全集,集合,则()A. B. C. D.5.已知点为抛物线:的焦点.若过点的直线交抛物线于,两点,交该抛物线的准线于点,且,,则()A. B.0 C.1 D.26.已知集合,则中所含元素的个数为()A. B. C. D.7.函数在上的最大值为()A. B. C. D.8.已知集合,,则()A. B. C. D.9.已知有相同两焦点F1、F2的椭圆+y2=1和双曲线-y2=1,P是它们的一个交点,则ΔF1PF2的形状是()A.锐角三角形 B.直角三角形 C.钝有三角形 D.等腰三角形10.函数的图象如图所示,为了得到的图象,则只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度11.函数(,则()A. B. C. D.大小关系不能确定12.已知某随机变量服从正态分布,且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则整数__________.14.从总体中抽取一个样本是5,6,7,8,9,则总体方差的估计值是____________.15.某班有50名同学,一次数学考试的成绩服从正态分布,已知,估计该班学生数学成绩在120分以上有人.16.命题“,”的否定为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,菱形的对角线与相交于点,,,点分别在,上,,交于点.将沿折到的位置,.(1)证明:;(2)求二面角的正弦值.18.(12分)已知复数,且为纯虚数,求.(其中为虚数单位)19.(12分)已知极点为直角坐标系的原点,极轴为轴正半轴且单位长度相同的极坐标系中曲线,(为参数).(1)求曲线上的点到曲线距离的最小值;(2)若把上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的倍,得到曲线,设,曲线与交于两点,求.20.(12分)已知函数,,(为自然对数的底数),且曲线与在坐标原点处的切线相同.(1)求的最小值;(2)若时,恒成立,试求实数的取值范围.21.(12分)已知等差数列满足:,.的前n项和为.(Ⅰ)求及;(Ⅱ)令(),求数列的前项和.22.(10分)(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.2、A【解题分析】试题分析:二项式(x+i)6的展开式的通项为Tr+1=C6rx6-ri【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式(x+i)6可以写为(i+x)6,则其通项为C6ri3、A【解题分析】
先求出抛物线的焦点坐标,进而可得到双曲线的右焦点坐标,然后利用m=a2【题目详解】由题意,抛物线的焦点坐标为2,0,则双曲线的右焦点为2,0,则m=22【题目点拨】本题考查了抛物线、双曲线的焦点坐标的求法,考查了学生的计算能力,属于基础题.4、D【解题分析】
首先解出集合,,由集合基本运算的定义依次对选项进行判定。【题目详解】由题可得,;所以,则选项正确;故答案选D【题目点拨】本题考查一元二次方程、绝对值不等式的解法以及集合间基本运算,属于基础题。5、B【解题分析】
将长度利用相似转换为坐标关系,联立直线和抛物线方程,利用韦达定理求得答案.【题目详解】易知:焦点坐标为,设直线方程为:如图利用和相似得到:,【题目点拨】本题考查了抛物线与直线的关系,相似,意在考查学生的计算能力.6、D【解题分析】列举法得出集合,共含个元素.故答案选7、A【解题分析】
对函数求导,利用导数分析函数的单调性,求出极值,再结合端点函数值得出函数的最大值.【题目详解】,,令,由于,得.当时,;当时,.因此,函数在处取得最小值,在或处取得最大值,,,因此,,故选A.【题目点拨】本题考查利用导数求解函数的最值,一般而言,利用导数求函数在闭区间上的最值的基本步骤如下:(1)求导,利用导数分析函数在闭区间上的单调性;(2)求出函数的极值;(3)将函数的极值与端点函数值比较大小,可得出函数的最大值和最小值.8、A【解题分析】分析:根据题意,求得集合,再利用集合的运算,即可求解.详解:由题意,,所以,故选A.点睛:本题主要考查了集合的运算问题,其中正确求解集合是解答的关键,着重考查了推理与运算能力.9、B【解题分析】根据椭圆和双曲线定义:又;故选B10、D【解题分析】
先根据图象确定A的值,进而根据三角函数结果的点求出求与的值,确定函数的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可得到结果.【题目详解】由题意,函数的部分图象,可得,即,所以,再根据五点法作图,可得,求得,故.函数的图象向左平移个单位,可得的图象,则只要将的图象向右平移个单位长度可得的图象,故选:D.【题目点拨】本题主要考查了三角函数的图象与性质,以及三角函数的图象变换的应用,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.11、C【解题分析】
对函数求导得到函数的导函数,进而得到原函数的单调性,从而得到结果.【题目详解】函数(,对函数求导得到当x>1时,导函数大于0,函数单调增,当x<1时,导函数小于0,函数单调递减,因为,故得到.故答案为C.【题目点拨】这个题目考查了导函数对于研究函数单调性的应用,函数的单调性可以通过常见函数的性质得到,也可以通过定义法证明得到函数的单调性,或者通过求导得到函数的单调性.12、A【解题分析】
直接利用正态分布曲线的对称性求解.【题目详解】,且,..故选:A.【题目点拨】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
由题得,再解方程即得解.【题目详解】由题得,所以,所以,所以.故答案为:2【题目点拨】本题主要考查组合数的性质,考查组合方程的解法,意在考查学生对这些知识的理解掌握水平.14、【解题分析】
先求出样本平均数,由此能求出样本方差,由此能求出总体方差的估计值.【题目详解】解:从总体中抽取一个样本是5,6,7,8,9,样本平均数为,样本方差为,总体方差的估计值是1.故答案为:1.【题目点拨】本题考查总体方差的估计值的求法,考查平均数、总体方差等基础知识,考查运算求解能力,属于基础题.15、【解题分析】试题分析:由题设,所以,故,故应填.考点:正态分布的性质及运用.【易错点晴】正态分布是随机变量的概率分布中最有意义最有研究价值的概率分布之一.本题这个分布的是最优秀的分布的原因是从正态分布的图象来看服从这一分布的数据较为集中的分分布在对称轴的两边,而且整个图象关于对称.所以解答这类问题时一定要借助图象的对称性及所有概率(面积)之和为这一性质,否则解题就没了思路,这一点务必要学会并加以应用.16、,【解题分析】
直接利用全称命题的否定是特称命题写出结果即可.【题目详解】解:因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:,【题目点拨】本题考查命题的否定,特称命题与全称命题的关系,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】
(1),可得,在菱形中,求出,由勾股定理的逆定理,即可证明;(2)以为原点,建立空间直角坐标系,求出坐标,进而求出平面和平面的法向量坐标,根据空间向量面面角公式,求出二面角的余弦,即可求出结论.【题目详解】(1)证明:∵,∴,∴.∵四边形为菱形,∴.∵,∴;又,,∴,∴,∴,∴,∴.(2)解:以为原点,分别以,,所在直线轴,建立如图所示的空间直角坐标系.,,,,,,.设平面法向量,由得,取,∴.同理可得面的法向量,设二面角的平面角为,则,∴.故二面角的正弦值为.【题目点拨】本题考查空间中点,线,面的位置关系,直线垂直的证明,利用空间向量法求二面角,意在考查直观想象、逻辑推理、数学计算能力,属于中档题.18、【解题分析】
利用复数的运算法则、纯虚数的定义出复数,再代入目标式子利用复数的运算法则、模的计算公式即可得到答案.【题目详解】复数,且为纯虚数.即为纯虚数,,,解得..,.【题目点拨】本题考查了复数的运算法则、纯虚数的定义、模的计算公式,考查对概念的理解、考查基本运算求解能力,属于基础题.19、(1);(2).【解题分析】
(1)将曲线的极坐标方程和的参数方程都化为普通方程,求出圆的圆心坐标和半径长,并利用点到直线的距离公式计算出圆心到直线的距离,即可得出曲线上的点到曲线距离的最小值为;(2)利用伸缩变换求出曲线的普通方程,并将直线的参数方程与曲线的方程联立,利用韦达定理求出.【题目详解】(1)由题意可知,曲线的普通方程为,圆心为,半径长为.在曲线的参数方程中消去参数,得,圆心到直线的距离为,因此,曲线上的点到曲线距离的最小值为;(2)在曲线上任取一点经过伸缩变换得出曲线上一点,则伸缩变换为,得,代入圆的方程得,所以曲线的方程为,将直线的方程与曲线的方程联立,消去、得.设点、所对应的参数分别为、,则,所以,.【题目点拨】本题考查了极坐标方程、直线的参数方程与普通方程之间的转化,考查直线参数方程的几何意义,熟练利用韦达定理求解是解本题的关键,考查计算能力,属于中等题.20、(1);(2).【解题分析】试题分析:(1)由于曲线与在坐标原点处的切线相同,即它们在原点的导数相同,,,且切点为原点,,解得.所以,当时,;当时,,所以当时,取得最小值为;(2)由(1)知,,即,从而,即.构造函数,利用导数并对分类讨论的图象与性质,由此求得实数的取值范围.试题解析:(1)因为,,依题意,,且,解得,所以,当时,;当时,.故的单调递减区间为,单调递增区间为.∴当时,取得最小值为0.(2)由(1)知,,即,从而,即.设,则,(1)当时,因为,∴(当且仅当时等号成立)此时在上单调递增,从而,即.(2)当时,由于,所以,又由(1)知,,所以,故,即.(此步也可以直接证)(3)当时,令,则,显然在上单调递增,又,,所以在上存在唯一零点,当时,,∴在上单调递减,从而,即,所以在上单调递减,从而当时,,即,不合题意.综上,实数的取值范围为.考点:函数导数与不等式、恒成立问题.【方法点晴】第一问是跟切线有关的问题,关键点在于切点和斜率,切点是坐标原点,由于两条曲线在原点的切线相同,故两个函数在原点的导数值相等,利用这两个条件联立方程组就能求出的值.第二问是利用导数来求解不等式,我们构造函数,利用导数来研究的图象与性质,含有参数,我们就需要对进行分类讨论.21、(Ⅰ);(Ⅱ).【解题分析】试题分析:(1)设等差数列的公差为,由已知可得解得,则及可求;(2)由(1)可得,裂项求和即可试题解析:(1)设等差数列的公差为,因为,,所以有,解得,所以,.(2)由(1)知,,所以,所以,即数列的前项和.考点:等差数列的通项公式,前项和公式.裂项求和22、(1)见解析;(2)见解析.【解题分析】试题分析:(1)由四点共圆性质可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论