




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省番禺区广东第二师范学院番禺附中高二数学第二学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某产品的广告费用万元与销售额万元的统计数据如下表:根据以上数据可得回归直线方程,其中,据此模型预报广告费用为6万元时,销售额为65.5万元,则,的值为()A., B.,C., D.,2.若函数的导函数的图象如图所示,则的图象有可能是()A. B.C. D.3.在正四面体中,点,分别在棱,上,若且,,则四面体的体积为()A. B. C. D.4.已知函数在上单调递减,则的取值范围是()A. B. C. D.5.已知全集,集合,,那么集合()A. B. C. D.6.在正方体中,点,分别是,的中点,则下列说法正确的是()A. B.与所成角为C.平面 D.与平面所成角的余弦值为7.若函数在区间上的最小值为,则实数的值为()A. B. C. D.8.将函数的图像向右平移个单位长度,再把图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数的最大值为 B.函数的最小正周期为C.函数的图象关于直线对称 D.函数在区间上单调递增9.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为()A.90 B.60 C.120 D.11010.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的体积为()A.2 B.4 C. D.11.已知关于的方程为(其中),则此方程实根的个数为()A.2 B.2或3 C.3 D.3或412.已知函数在处的导数为l,则()A.1 B. C.3 D.二、填空题:本题共4小题,每小题5分,共20分。13.湖面上浮着一个球,湖水结冰后将球取出,冰上留下一个直径为24cm,深为8cm的空穴,则这球的半径为______cm.14.在实数范围内,不等式的解集为___________.15.外接圆的半径为1,圆心为O,且,,则______.16.若复数满足(为虚数单位),则的共轭复数__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为迎接月日的“全民健身日”,某大学学生会从全体男生中随机抽取名男生参加米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于秒,则称为“好体能”.(Ⅰ)写出这组数据的众数和中位数;(Ⅱ)要从这人中随机选取人,求至少有人是“好体能”的概率;(Ⅲ)以这人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取人,记表示抽到“好体能”学生的人数,求的分布列及数学期望.18.(12分)已知函数,.(1)若,当时,求函数的极值.(2)当时,证明:.19.(12分)小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.(1)求小陈同学三次投篮至少命中一次的概率;(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.20.(12分)已知椭圆:的离心率为,短轴长为1.(1)求椭圆的标准方程;(1)若圆:的切线与曲线相交于、两点,线段的中点为,求的最大值.21.(12分)全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某市的体育部门对某小区的4000人进行了“运动参与度”统计评分(满分100分),得到了如下的频率分布直方图:(1)求这4000人的“运动参与度”的平均得分(同一组中数据用该组区间中点作代表);(2)由直方图可认为这4000人的“运动参与度”的得分服从正态分布,其中,分别取平均得分和方差,那么选取的4000人中“运动参与度”得分超过84.81分(含84.81分)的人数估计有多少人?(3)如果用这4000人得分的情况来估计全市所有人的得分情况,现从全市随机抽取4人,记“运动参与度”的得分不超过84.81分的人数为,求.(精确到0.001)附:①,;②,则,;③.22.(10分)已知实数为整数,函数,(1)求函数的单调区间;(2)如果存在,使得成立,试判断整数是否有最小值,若有,求出值;若无,请说明理由(注:为自然对数的底数).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据回归直线过样本中心和条件中给出的预测值得到关于,的方程组,解方程组可得所求.详解:由题意得,又回归方程为,由题意得,解得.故选C.点睛:线性回归方程过样本中心是一个重要的结论,利用此结论可求回归方程中的参数,也可求样本数据中的参数.根据回归方程进行预测时,得到的数值只是一个估计值,解题时要注意这一点.2、C【解题分析】分析:先根据导函数的图象确定导函数大于0的范围和小于0的x的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间.详解:由的图象易得当时
故函数在区间上单调递增;
当时,f'(x)<0,故函数在区间上单调递减;
故选:C.点睛:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.3、C【解题分析】
由题意画出图形,设,,,由余弦定理得到关于,,的方程组,求解可得,的值,然后分别求出三角形的面积及A到平面的高,代入棱锥体积公式得答案.【题目详解】如图,设,,,∵,,∴由余弦定理得,①②③③-①得,,即,∵,则,代入③,得,又,得,,∴.∴A到平面PEF的距离.∴,故选C.【题目点拨】本题考查棱柱、棱锥、棱台体积的求法,考查数形结合的解题思想方法,考查计算能力,是中档题.4、A【解题分析】
等价于在上恒成立,即在上恒成立,再构造函数并求g(x)的最大值得解.【题目详解】在上恒成立,则在上恒成立,令,,所以在单调递增,故g(x)的最大值为g(3)=.故.故选A【题目点拨】本题主要考查利用导数研究函数的单调性,考查利用导数研究不等式的恒成立问题,属于基础题.5、C【解题分析】
先求得集合的补集,然后求其与集合的交集.【题目详解】依题意,故,故选C.【题目点拨】本小题主要考查集合补集的运算,考查集合交集的运算,属于基础题.6、C【解题分析】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出结果.【题目详解】解:设正方体ABCD﹣A1B1C1D1中棱长为2,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,A1(2,0,2),E(2,1,0),B(2,2,0),F(0,2,1),(0,1,﹣2),(﹣2,0,1),2≠0,∴A1E与BF不垂直,故A错误;(﹣2,2,﹣1),(﹣2,﹣2,0),cos,0,∴A1F与BD所成角为90°,故B错误;(2,0,0),(0,2,1),(0,1,﹣2),•0,0,∴A1E⊥DA,A1E⊥DF,∴A1E⊥平面ADF,故C正确;(﹣2,2,﹣1),平面ABCD的法向量(0,0,1),设A1F与平面ABCD所成角为θ,则sinθ,∴cosθ.∴A1F与平面ABCD所成角的余弦值为,故D错误.故选:C.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7、A【解题分析】
求出,(或)是否恒成立对分类讨论,若恒成立求出最小值(或不存在最小值),若不恒成立,求出极值最小值,建立的关系式,求解即可.【题目详解】.(1)当时,,所以在上单调递减,,(舍去).(2)当时,.①当时,,此时在上恒成立,所以在上单调递减,,解得(舍去);②当时,.当时,,所以在上单调递减,当时,,所以在上单调递增,于是,解得.综上,.故选:A【题目点拨】本题考查函数的最值,利用导数是解题的关键,考查分类讨论思想,如何合理确定分类标准是难点,属于中档题.8、D【解题分析】
根据平移变换和伸缩变换的原则可求得的解析式,依次判断的最值、最小正周期、对称轴和单调性,可求得正确结果.【题目详解】函数向右平移个单位长度得:横坐标伸长到原来的倍得:最大值为,可知错误;最小正周期为,可知错误;时,,则不是的对称轴,可知错误;当时,,此时单调递增,可知正确.本题正确选项:【题目点拨】本题考查三角函数平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.9、D【解题分析】
用所有的选法共有减去没有任何一名女生入选的组队方案数,即得结果【题目详解】所有的选法共有种其中没有任何一名女生入选的组队方案数为:故至少有一名女生入选的组队方案数为故选【题目点拨】本题主要考的是排列,组合及简单计数问题,考查组合的运用,处理“至少有一名”类问题,宜选用间接法,是一道基础题。10、A【解题分析】
根据三视图的特点可以分析该物体是一个直三棱柱,即可求得体积.【题目详解】由三视图可得该物体是一个以侧视图为底面的直三棱柱,所以其体积为.故选:A【题目点拨】此题考查三视图的认识,根据三视图求几何体的体积,关键在于准确识别三视图的特征.11、C【解题分析】分析:将原问题转化为两个函数交点个数的问题,然后利用导函数研究函数的性质即可求得最终结果.详解:很明显不是方程的根,据此可将方程变形为:,原问题等价于考查函数与函数的交点的个数,令,则,列表考查函数的性质如下:++-++单调递增单调递增单调递减单调递减单调递增函数在有意义的区间内单调递增,故的单调性与函数的单调性一致,且函数的极值绘制函数图像如图所示,观察可得,与函数恒有3个交点,即题中方程实根的个数为3.本题选择C选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.12、B【解题分析】
根据导数的定义可得到,,然后把原式等价变形可得结果.【题目详解】因为,且函数在处的导数为l,所以,故选B.【题目点拨】本题主要考查导数的定义及计算,较基础.二、填空题:本题共4小题,每小题5分,共20分。13、13;【解题分析】
设球的半径为,得到截面圆的半径为,球心距为,再由,列出方程,即可求解.【题目详解】设球的半径为,将球取出,留下空穴的直径为,深,则截面圆的半径为,球心距为,又由,即,化简得,解得.故答案为:.【题目点拨】本题主要考查了球的几何特征,其中解答中根据球的半径,截面圆的半径,以及球心距构造直角三角形,利用勾股定理列出方程是解答的关键,着重考查了推理与计算能力,属于基础题.14、【解题分析】因此解集为.考点:本题主要考查绝对值不等式的解法,考查运用能力.15、3【解题分析】
利用向量的运算法则将已知等式化简得到,得到BC为直径,故为直角三角形,求出三边长可得的值,利用两个向量的数量积的定义求出的值.【题目详解】,.,B,C共线,BC为圆的直径,.,故.则,【题目点拨】本题主要考查两个向量的数量积的定义,两个向量垂直的充要条件、圆的直径对的圆周角为直角,求出为直角三角形及三边长,是解题的关键.16、【解题分析】
先由复数的除法运算,求出复数,进而可得出其共轭复数.【题目详解】因为,所以,因此其共轭复数为故答案为【题目点拨】本题主要考查复数的运算,以及共轭复数,熟记运算法则与共轭复数的概念即可,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)这组数据的众数和中位数分别是.(2).(3)分布列见解析;.【解题分析】分析:(Ⅰ)利用众数和中位数的定义写出这组数据的众数和中位数.(Ⅱ)利用古典概型求至少有人是“好体能”的概率.(Ⅲ)利用二项分布求的分布列及数学期望.详解:(I)这组数据的众数和中位数分别是;(II)设求至少有人是“好体能”的事件为A,则事件A包含得基本事件个数为;总的基本事件个数为,(Ⅲ)的可能取值为由于该校男生人数众多,故近似服从二项分布,,,的分布列为故的数学期望点睛:(1)本题主要考查众数和中位数,考查古典概型的计算,考查分布列和期望的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)若~则.18、(1)函数的极小值为,,无极大值;(2)证明见解析.【解题分析】
(1)求出的导数,根据=0得到极值点,遂可根据单调区间得出极值.(2)根据,可转化为.令,只需设法证明可得证.【题目详解】(1)当时,,令得或,随x的变化情况:x1-0+-0+↘↗↘1↗∴函数的极小值为,,无极大值.(2)证明:当时,,若成立,则必成立,令,在上单调递增,又,,∴在上有唯一实根,且,当时,;当时,,∴当时,取得最小值,由得:,∴,∴∴∴当时,.【题目点拨】本题考察了函数的单调区间、极值点、导数的应用、零点和根的关系等知识的应用,主要考察了学生的运算能力和思维转换能力,属于难题.19、(1);(2).【解题分析】分析:(1)先求小陈同学三次投篮都没有命中的概率,再用1减得结果,(2)先确定随机变量取法,再利用组合数求对应概率,列表得分布列,最后根据数学期望公式求结果.详解:(1)小陈同学三次投篮都没有命中的概率为(1-)×(1-)×(1-)=;所以小陈同学三次投篮至少命中一次的概率为1-=.(2)ξ可能的取值为0,1,2,1.P(ξ=0)=;P(ξ=1)=×(1-)×(1-)+(1-)××(1-)+(1-)×(1×)×=;P(ξ=2)=××+××+××=;P(ξ=1)=××=;故随机变量ξ的概率分布为ξ0121P所以数学期望E(ξ)=0×+1×+2×=+1×=.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.20、(1);(1)【解题分析】试题分析:(1)待定系数法求椭圆方程;(1)借助韦达定理表示的最大值,利用二次函数求最值.试题解析:(I),所以,又,解得.所以椭圆的标准方程.(II)设,,,易知直线的斜率不为,则设.因为与圆相切,则,即;由消去,得,则,,,,即,,设,则,,当时等号成立,所以的最大值等于.21、(1)平均成绩为70.5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药物研发伦理问题试题及答案
- 董事长秘书试题及答案
- 考生必读文化产业管理试题及答案
- 激光工程师需要掌握的技能列表试题及答案
- 激光技术工程师职业素养提升考题试题及答案
- 系统架构设计师考试团队协作技巧试题及答案
- 自学卫生管理的试题及答案
- 社交技能与心理健康的关系试题及答案
- 系统架构设计师考试模拟题解析试题及答案
- 药学发展对药师职业的影响2024年考试试题及答案
- 石灰-石灰有效氧化钙、氧化镁测定
- 《急性肺栓塞》课件
- 泰国中小学汉语课程大纲研究
- 中医内科学课件-腰痛
- 广东广州天河区明珠中英文学校2022-2023学年小学六年级第二学期小升初数学试卷含答案
- 万科-海盗计划
- 人教版七年级上册英语单词表
- 北师大版小学数学三年级下册 口算1000题(含答案)
- 冬奥会33项应急预案是
- 中班语言课件《章鱼先生卖雨伞》
- 【杜邦分析法企业财务分析文献综述】
评论
0/150
提交评论