2024届东北育才中学数学高二第二学期期末综合测试模拟试题含解析_第1页
2024届东北育才中学数学高二第二学期期末综合测试模拟试题含解析_第2页
2024届东北育才中学数学高二第二学期期末综合测试模拟试题含解析_第3页
2024届东北育才中学数学高二第二学期期末综合测试模拟试题含解析_第4页
2024届东北育才中学数学高二第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届东北育才中学数学高二第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,求出关于的线性回归方程为,那么表中的值为()A. B. C. D.2.已知函数,函数有四个不同的零点、、、,且满足:,则的取值范围是()A. B. C. D.3..已知为等比数列,,则.若为等差数列,,则的类似结论为()A. B.C. D.4.已知,分别是椭圆C:的上下两个焦点,若椭圆上存在四个不同点P,使得的面积为,则椭圆C的离心率e的取值范围是()A. B. C. D.5.的展开式中的常数项为()A. B. C. D.6.已知定义在上的函数的图象关于对称,且当时,单调递增,若,则的大小关系是A. B. C. D.7.若曲线上任意一点处的切线的倾斜角都是锐角,那么整数等于()A.0 B.1 C. D.8.一辆汽车在平直的公路上行驶,由于遇到紧急情况,以速度(的单位:,的单位:)紧急刹车至停止.则刹车后汽车行驶的路程(单位:)是()A. B. C. D.9.已知椭圆E:x2a2+y24=1,设直线l:y=kx+1k∈R交椭圆A.mx+y+m=0 B.mx+y-m=0C.mx-y-1=0 D.mx-y-2=010.设,,若,则的最小值为A. B.8 C.9 D.1011.已知集合,集合中至少有3个元素,则()A. B. C. D.12.A.30 B.24 C.20 D.15二、填空题:本题共4小题,每小题5分,共20分。13.已知向量满足:,,当取最大值时,______.14.颜色不同的个小球全部放入个不同的盒子中,若使每个盒子不空,则不同的方法有__________.(用数值回答)15.已知为偶函数,当时,,则__________.16.设集合,,若,则的所有可能的取值构成的集合是_______;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆经过点离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于两点,为椭圆的左焦点,若,求直线的方程.18.(12分)已知条件p:方程表示焦点在y轴上的椭圆;条件q:双曲线的离心率.(1)若a=2,P={m|m满足条件P},Q={m|m满足条件q},求;(2)若是的充分不必要条件,求实数a的取值范围.19.(12分)已知抛物线:,点为直线上任一点,过点作抛物线的两条切线,切点分别为,,(1)证明,,三点的纵坐标成等差数列;(2)已知当点坐标为时,,求此时抛物线的方程;(3)是否存在点,使得点关于直线的对称点在抛物线上,其中点满足,若存在,求点的坐标;若不存在,说明理由.20.(12分)已知函数.(1)当时,求证:在上是单调递减函数;(2)若函数有两个正零点、,求的取值范围,并证明:.21.(12分)已知函数,k∈R.(I)求函数f(x)的单调区间;(II)当k>0时,若函数f(x)在区间(1,2)内单调递减,求k的取值范围.22.(10分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.(1)求乙离子残留百分比直方图中的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【题目详解】∵由回归方程知=,解得t=3,故选A.【题目点拨】】本题考查回归分析的初步应用,考查样本中心点的性质,考查方程思想的应用,是一个基础题,解题时注意数字计算不要出错.2、D【解题分析】

作出函数的图象,可得出当直线与函数的图象有四个交点时的取值范围,根据图象得出,,并求出实数的取值范围,将代数式转化为关于的函数,利用双勾函数的基本性质求出的取值范围.【题目详解】作出函数的图象如下图所示:由图象可知,当时,直线与函数的图象有四个交点,由于二次函数的图象关于直线对称,则,又,由题意可知,,,,可得,,由,即,解得.,令,则,由基本不等式得,当且仅当时,等号成立,当时,,当时,,所以,,因此,的取值范围是,故选:D.【题目点拨】本题考查函数零点的取值范围,解题时要充分利用图象的对称性以及对数的运算性质得出一些定值条件,并将所求代数式转化为以某个变量为自变量的函数,转化为函数值域求解,考查化归与转化思想、函数方程思想的应用,属于中等题.3、D【解题分析】

根据等差数列中等差中项性质推导可得.【题目详解】由等差数列性质,有==…=2.易知选项D正确.【题目点拨】等差中项和等比中项的性质是出题的热点,经常与其它知识点综合出题.4、A【解题分析】

求出椭圆的焦距,求出椭圆的短半轴的长,利用已知条件列出不等式求出的范围,然后求解离心率的范围.【题目详解】解:,分别是椭圆的上下两个焦点,可得,短半轴的长:,椭圆上存在四个不同点,使得△的面积为,可得,可得,解得,则椭圆的离心率为:.故选:.【题目点拨】本题考查椭圆的简单性质的应用,属于基础题.5、C【解题分析】

化简二项式的展开式,令的指数为零,求得常数项.【题目详解】二项式展开式的通项为,令,故常数项为,故选C.【题目点拨】本小题主要考查二项式展开式的通项公式,考查二项式展开式中的常数项,属于基础题.6、D【解题分析】分析:由题意可得函数为偶函数,再根据函数的单调性,以及指数函数和对数函数的性质比较即可得到结果详解:定义在上的函数的图象关于对称,函数的图象关于轴对称即函数为偶函数,,当时,单调递增故选点睛:本题利用函数的奇偶性和单调性判断函数值的大小,根据单调性的概念,只要判定输入值的大小即可判断函数值的大小。7、B【解题分析】

求出原函数的导函数,由导函数大于0恒成立转化为二次不等式对应二次方程的判别式小于0,进一步求解关于的不等式得答案.【题目详解】解:由,得,曲线上任意点处的切线的倾斜角都为锐角,对任意实数恒成立,

.解得:.整数的值为1.故答案为B【题目点拨】本题考查了利用导数研究曲线上某点处的切线方程,函数在某点处的导数值就是对应曲线上该点处的切线的斜率,考查了数学转化思想方法,是中档题.8、B【解题分析】

先计算汽车停止的时间,再利用定积分计算路程.【题目详解】当汽车停止时,,解得:或(舍去负值),所以.故答案选B【题目点拨】本题考查了定积分的应用,意在考查学生的应用能力和计算能力.9、D【解题分析】

在直线l中取k值,对应地找到选项A、B、C中的m值,使得直线与给出的直线关于坐标轴或原点具有对称性得出答案。【题目详解】当直线l过点-1,0,取m=-1,直线l和选项A中的直线重合,故排除A;当直线l过点1,0,取m=-1,直线l和选项B中的直线关于y轴对称,被椭圆E截得的弦长相同,故排除B;当k=0时,取m=0,直线l和选项C中的直线关于x轴对称,被椭圆E截得的弦长相同,故排除C;直线l的斜率为k,且过点0,1,选项D中的直线的斜率为m,且过点0,-2,这两条直线不关于x轴、y轴和原点对称,故被椭圆E所截得的弦长不可能相等。故选:D。【题目点拨】本题考查直线与椭圆的位置关系,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于中等题。10、C【解题分析】

根据题意可知,利用“1”的代换,将化为,展开再利用基本不等式,即可求解出答案。【题目详解】由题意知,,,且,则当且仅当时,等号成立,的最小值为9,故答案选C。【题目点拨】本题主要考查了利用基本不等式的性质求最值的问题,若不满足基本不等式条件,则需要创造条件对式子进行恒等变形,如构造“1”的代换等。11、C【解题分析】试题分析:因为中到少有个元素,即集合中一定有三个元素,所以,故选C.考点:1.集合的运算;2.对数函数的性质.12、A【解题分析】

根据公式:计算即可.【题目详解】因为,故选:A.【题目点拨】本题考查排列数的计算,难度较易.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据向量模的性质可知当与反向时,取最大值,根据模长的比例关系可得,整理可求得结果.【题目详解】当且仅当与反向时取等号又整理得:本题正确结果:【题目点拨】本题考查向量模长的运算性质,关键是能够确定模长取得最大值时,两个向量之间的关系,从而得到两个向量之间的关系.14、1【解题分析】分析:利用挡板法把4个小球分成3组,然后再把这3组小球全排列,再根据分步计数原理求得所有的不同放法的种数.详解:在4个小球之间插入2个挡板,即可把4个小球分成3组,方法有种.

然后再把这3组小球全排列,方法有种.

再根据分步计数原理可得所有的不同方法共有种,

故答案为1.点睛:本题主要考查排列、组合以及简单计数原理的应用,利用挡板法把4个小球分成3组,是解题的关键,属于中档题15、【解题分析】

由偶函数的性质直接求解即可【题目详解】.故答案为【题目点拨】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力16、【解题分析】

根据集合的包含关系可确定可能的取值,从而得到结果.【题目详解】由得:或或所有可能的取值构成的集合为:本题正确结果:【题目点拨】本题考查根据集合的包含关系求解参数值的问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)或.【解题分析】

(Ⅰ)由题中已知条件可得,,代入椭圆的方程,将点的坐标代入椭圆方程可求出c的值,进而得出、b的值,于是可得到椭圆的方程;(Ⅱ)设直线l的方程为,设点,将直线l的方程代入椭圆的方程,列出韦达定理,由等式结合韦达定理可求出的值,即可求出直线l的方程.【题目详解】(Ⅰ)设椭圆的焦距为,则,,所以,椭圆的方程为,将点的坐标代入椭圆的方程得,解得,则,因此,椭圆的方程为;(Ⅱ)设直线l的方程为,设点,将直线l的方程代入椭圆的方程,并化简得,,解得或.由韦达定理可得,,同理可得,所以,,解得,合乎题意!因此,直线l的方程为或.【题目点拨】本题考查直线与椭圆的综合,考查韦达定理的应用,考查计算能力与推理能力,属于中等题.18、(1)(2)【解题分析】

(1)分别求出:p:,解得P,q:,,解得Q,再根据集合的交集的概念得到;(2)根据是的充分不必要条件,可得q是p的充分不必要条件,即可得出.【题目详解】(1)条件p:方程表示焦点在y轴上的椭圆,则,解得.∴.条件q:双曲线的离心率.,,解得.∴.∴.(2)由(1)可得:.条件q:双曲线的离心率.,,解得.∴.∵是的充分不必要条件,则q是p的充分不必要条件.∴,解得.∴实数a的取值范围是.【题目点拨】本题考查了椭圆与双曲线的标准方程及其性质、方程与不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.19、(1)证明见解析;(2);(3)存在一点满足题意.【解题分析】

(1)设,对求导,则可求出在,处的切线方程,再联立切线方程分析即可.

(2)根据(1)中的切线方程,代入则可得到直线的方程,再联立抛物线求弦长列式求解即可.(3)分情况,当的纵坐标与两种情况,求出点的坐标表达式,再利用与垂直进行求解分析是否存在即可.【题目详解】(1)设,对求导有,故在处的切线方程为,即,又,故同理在处的切线方程为,联立切线方程有,化简得,即的纵坐标为,因为,故,,三点的纵坐标成等差数列.

(2)同(1)有在处的切线方程为,因为,所以,即,又切线过,则,同理,故均满足直线方程,即故直线,联立,则,即,解得,故抛物线:.(3)设,由题意得,则中点,又直线斜率,故设.又的中点在直线上,且中点也在直线上,代入得.又在抛物线上,则.所以或.即点或(1)当时,则,此时点满足(2)当时,对,此时,则.又.,所以,不成立,对,因为,此时直线平行于轴,又因为,故直线与直线不垂直,与题设矛盾,故时,不存在符合题意的点.综上所述,仅存在一点满足题意.【题目点拨】本题考查了抛物线的双切线问题,需要求出在抛物线上的点的切线方程,再根据抛物线双切线的性质进行计算,同时要灵活运用抛物线的方程,属于难题.20、(1)见证明;(2)实数的取值范围是,证明见解析.【解题分析】

(1)由题意得出在区间上恒成立,由得出,构造函数,证明在区间上恒成立即可;(2)由利用参变量分离法得出,将题意转化为当直线与函数在上有两个交点时求的取值范围,利用数形结合思想求解即可,然后由题意得出,取自然对数得,等式作差得,利用分析得出所证不等式等价于,然后构造函数证明即可.【题目详解】(1),.由题意知,不等式在区间上恒成立,由于,当时,,构造函数,其中,则,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,即,,所以,.所以,不等式在区间上恒成立,因此,当时,函数在上是单调递减函数;(2)令,可得令,则.当时,,当时,.当时,函数单调递减,当时,函数单调递增.,当时,,当时..时,函数有两个正零点,因此,实数的取值范围是.由上知时,,由题意得,上述等式两边取自然对数得,两式作差得,,要证,即证.由于,则,即证,即证,令,即证,其中.构造函数,其中,即证在上恒成立.,所以,函数在区间上恒成立,所以,,因此,.【题目点拨】本题考查利用导数证明函数的单调性,以及利用导数研究函数的零点问题,同时也考查了利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论