版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省内江市2024届数学高二第二学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,给出了样本容量均为7的A、B两组样本数据的散点图,已知A组样本数据的相关系数为r1,B组数据的相关系数为r2,则()A.r1=r2 B.r1<r2 C.r1>r2 D.无法判定2.运行如图所示的程序框图,输出的值为()A.0 B. C.-1 D.3.复数(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.的展开式中,的系数为()A.15 B.-15 C.60 D.-605.某公司为确定明年投入某产品的广告支出,对近年的广告支出与销售额(单位:百万元)进行了初步统计,得到下列表格中的数据:经测算,年广告支出与年销售额满足线性回归方程,则的值为()A. B. C. D.6.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=12A.66 B.33 C.67.演绎推理“因为时,是的极值点,而对于函数,,所以0是函数的极值点.”所得结论错误的原因是()A.大前提错误 B.小前提错误 C.推理形式错误 D.全不正确8.已知,,则A. B. C. D.9.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:使用智能手机不使用智能手机合计学习成绩优秀4812学习成绩不优秀16218合计201030附表:经计算,则下列选项正确的是A.有的把握认为使用智能手机对学习有影响B.有的把握认为使用智能手机对学习无影响C.有的把握认为使用智能手机对学习有影响D.有的把握认为使用智能手机对学习无影响10.下列求导运算的正确是()A.为常数 B.C. D.11.下列说法错误的是A.回归直线过样本点的中心B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C.在回归直线方程中,当解释变量x每增加1个单位时,预报变量平均增加个单位D.对分类变量X与Y,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越小12.已知函数在处取得极值,则的图象在处的切线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为______.14.(题文)x-1x615.如图,已知四面体的棱平面,且,其余的棱长均为1,四面体以所在的直线为轴旋转弧度,且始终在水平放置的平面上方,如果将四面体在平面内正投影面积看成关于的函数,记为,则函数的取值范围为______.16.已知,,则向量,的夹角为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,椭圆,、,为椭圆的左、右顶点.设为椭圆的左焦点,证明:当且仅当椭圆上的点在椭圆的左、右顶点时,取得最小值与最大值.若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆的标准方程.若直线与中所述椭圆相交于、两点(、不是左、右顶点),且满足,求证:直线过定点,并求出该定点的坐标.18.(12分)等边的边长为,点,分别是,上的点,且满足(如图(1)),将沿折起到的位置,使二面角成直二面角,连接,(如图(2)).(1)求证:平面;(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.19.(12分)已知:在中,,,分别是角,,所对的边长,是和的等差中项.(Ⅰ)求角;(Ⅱ)若的面积,且,求的周长.20.(12分)已知中心在原点,焦点在轴上的椭圆过点,离心率为.(1)求椭圆的方程;(2)设过定点的直线与椭圆交于不同的两点,且,求直线的斜率的取值范围;21.(12分)的展开式中若有常数项,求最小值及常数项.22.(10分)已知椭圆的离心率为,,分别是其左、右焦点,且过点.(1)求椭圆的标准方程;(2)若在直线上任取一点,从点向的外接圆引一条切线,切点为.问是否存在点,恒有?请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
利用“散点图越接近某一条直线线性相关性越强,相关系数的绝对值越大”判断即可.【题目详解】根据两组样本数据的散点图知,组样本数据几乎在一条直线上,且成正相关,∴相关系数为应最接近1,组数据分散在一条直线附近,也成正相关,∴相关系数为,满足,即,故选C.【题目点拨】本题主要考查散点图与线性相关的的关系,属于中档题.判断线性相关的主要方法:(1)散点图(越接近直线,相关性越强);(2)相关系数(绝对值越大,相关性越强).2、B【解题分析】由题设中提供的算法流程图可知,由于的周期是,而,所以,应选答案B.3、D【解题分析】
,对应的点为,在第四象限,故选D.4、C【解题分析】试题分析:依题意有,故系数为.考点:二项式.5、D【解题分析】分析:求出,代入回归方程计算,利用平均数公式可得出的值.详解:,,,解得,故选D.点睛:本题主要考查平均数公式的应用,线性回归方程经过样本中心的性质,意在考查综合利用所学知识解决问题的能力,属于基础题.6、C【解题分析】如图,以A为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),F(a,0,0),AG=(a,a,0),AC=(0,2a,2a),BG=(a,-a,0),BC=(0,0,2a),设平面AGC的法向量为n1=(x1,y1,1),由AG⋅n1=0AC⋅nsinθ=BG⋅n1|BG7、A【解题分析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为时,是的极值点,而对于函数,,所以0是函数的极值点.”中,
大前提:时,在两侧的符号如果不相反,则不是的极值点,故错误,
故导致错误的原因是:大前提错误,
故选:A.点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题8、A【解题分析】,故选A.9、A【解题分析】
根据附表可得,所以有的把握认为使用智能手机对学习有影响,选A10、B【解题分析】
根据常用函数的求导公式.【题目详解】因为(为常数),,,,所以,选项B正确.【题目点拨】本题考查常用函数的导数计算.11、D【解题分析】
分析:A.两个变量是线性相关的,则回归直线过样本点的中心B.两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位D.正确.详解:A.两个变量是线性相关的,则回归直线过样本点的中心;B.两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位D.错误,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越大故选:D.点睛:本题考查了两个变量的线性相关关系的意义,线性回归方程,相关系数,以及独立性检验等,是概念辨析问题.12、A【解题分析】
利用列方程,求得的值,由此求得,进而求得的图象在处的切线方程.【题目详解】,函数在处取得极值,,解得,,于是,可得的图象在处的切线方程为,即.故选:A【题目点拨】本小题主要考查根据极值点求参数,考查利用导数求切线方程,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、240.【解题分析】
先把5本书取出两本看做一个元素,这一元素和其他的三个元素分给四个同学,相当于在四个位置全排列,根据分步乘法计数原理即可得出结果.【题目详解】从5本书中取出两本看做一个元素共有种不同的取法,这一元素与其他三个元素分给四个同学共有种不同的分法,根据分步乘法计数原理,共有种不同的分法.故答案为:240【题目点拨】本题主要考查了排列组合的综合应用,分步乘法计数原理,属于中档题.14、15【解题分析】试题分析:展开式的通项公式为Tr+1=(-1)r考点:二项式定理15、【解题分析】
用极限法思考.当直线平面时,有最小值,当直线平面时,有最大值,这样就可以求出函数的取值范围.【题目详解】取的中点,连接,,,于是有平面,所以,,其余的棱长均为1,所以,到的距离为,当直线平面时,有最小值,最小值为:;当直线平面时,有最大值,最大值为.故答案为:【题目点拨】本题考查了棱锥的几何性质,考查了线面垂直的判定与应用,考查了空间想象能力.16、【解题分析】
根据条件即可求出,利用,根据向量的夹角范围即可得出夹角.【题目详解】,.,故答案为:.【题目点拨】本题考查向量的数量积公式,向量数量积的坐标表示,属于基础题,难度容易.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析;;见解析,.【解题分析】
设点的坐标为,令,由点在椭圆上,得,则,代入式子,利用二次函数的性质和的取值范围,求出函数的最值以及对应的的取值,即可求证;由已知与,得,,解得,,再由求出,进而求出椭圆的标准方程;假设存在满足条件的直线,设,,联立直线方程和椭圆方程进行整理,化简出一元二次方程,再利用韦达定理列出方程组,根据题意得,代入列出关于的方程,进行化简求解.【题目详解】设点的坐标为,令.由点在椭圆上,得,则,代入,得,其对称轴方程为,由题意,知恒成立,在区间上单调递增.当且仅当椭圆上的点在椭圆的左、右顶点时,取得最小值与最大值.由已知与,得,,,..椭圆的标准方程为.如图所示,设,,联立,得,则则椭圆的右顶点为,,,,即..,解得,,且均满足.当时,l的方程为直线过定点,与已知矛盾.当时,l的方程为直线过定点,满足题意,直线l过定点,定点坐标为.【题目点拨】本题考查椭圆的方程和简单几何性质,以及直线与椭圆的位置关系,同时也考查了利用构造函数的方法处理最值问题,属于难题.18、(1)证明见解析;(2)存在点,.【解题分析】
(1)通过证明,即可证明平面;(2)以为坐标原点,以射线、、分别为轴、轴、轴的正半轴建立空间直角坐标系,设,然后并求出平面的一个法向量及的坐标,最后根据即可求出的值及的长度.【题目详解】(1)证明题图(1)中,由已知可得:,,.从而.故得,所以,.所以题图(2)中,,,所以为二面角的平面角,又二面角为直二面角,所以,即,因为且、平面,所以平面.(2)解存在.由(1)知,平面.以为坐标原点,以射线、、分别为轴、轴、轴的正半轴建立空间直角坐标系,如图,过作交于点,设,则,,,易知,,,所以.因为平面,所以平面的一个法向量为.因为直线与平面所成的角为,所以,解得.所以,满足,符合题意.所以在线段上存在点,使直线与平面所成的角为,此时.【题目点拨】本题主要考查线面垂直的证明及通过建立空间直角坐标系并表示出平面的法向量及直线的方向向量的坐标,解决已知直线和平面所成的角求参数的值问题,属中等难度题.19、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)根据正弦定理得到,即,解得答案.(Ⅱ)根据面积公式得到,根据余弦定理得到,得到周长.【题目详解】(Ⅰ)由已知得,由正弦定理得,即.∵,∴,∴.由于,∴.∵,∴.(Ⅱ)由得,,代入上式得.由余弦定理得,∴,∴,∴的周长为.【题目点拨】本题考查了正弦定理,余弦定理,面积公式,等差中项,意在考查学生的计算能力和综合应用能力.20、(1)(2)【解题分析】分析:(1)利用离心率,点在曲线上,列出的方程.(2)联立直线与椭圆方程根据韦达定理列出,的关系式,利用向量关系式,列出关于斜率的不等式,解出取值范围.详解:(1)设椭圆的方程为:,由已知:得:,,所以,椭圆的方程为:.(2)由题意,直线斜率存在,故设直线的方程为由得由即有即有解得综上:实数的取值范围为点睛:求参数的取值范围,最终落脚点在于计算直线与曲线的交点坐标的关系式.根据题目的条件,转化为,关系的式子是解题的关键.21、的最小值为;常数项为.【解题分析】
求出二项式展开式的通项,由可求出的最小值,并求出对应的值,代入通项即可得出所求的常数项.【题目详解】二项式展开式的通项为,令,得,所以,的最小值为,此时.此时,展开式中的常数项为.【题目点拨】本题考查利用二项式定理求常数项,一般利用的指数为零求出参数的值,考查运算求解能力,属于中等题.22、(1)(2),或【解题分析】
(1)求出后可得椭圆的标准方程.(2)先求出的外接圆的方程,设点为点为,则由可得对任意的恒成立,故可得关于的方程,从而求得的坐标.【题目详解】解:(1)因为椭圆的离心率为,所以.①又椭圆过点,所以代入得.②又.③由①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 选矿设备:破碎设备相关项目投资计划书范本
- 畜禽规模化养殖设备相关行业投资方案
- 煤制天然气相关行业投资方案范本
- 高速精密平板切纸机相关行业投资方案
- 抹灰石膏施工项目合同示范
- 2024年夫妻双方离婚财产分割协议
- 医疗行业医务人员考核方案
- 农业科技公司IT资产管理方案
- 2024年城市更新工程土方运输协议
- 流体画课件教学课件
- 张剑简要的创业计划书
- 钢筋工程量计算规则
- 2024年江西赣州城投工程管理有限公司招聘笔试参考题库含答案解析
- 人力资源各维度分析报告
- 蝴蝶效应教学课件
- 中医启蒙知识讲座
- 健康科技行业人员培训脑机接口与康复技术
- SB-T 11238-2023 报废电动汽车回收拆解技术要求
- 悬挑安全通道施工方案
- 贵州省黔东南州2022-2023学年七年级上学期期末文化水平测试数学试卷(含答案)
- 《超分子化学简介》课件
评论
0/150
提交评论