2024届淄博市重点中学数学高二第二学期期末达标测试试题含解析_第1页
2024届淄博市重点中学数学高二第二学期期末达标测试试题含解析_第2页
2024届淄博市重点中学数学高二第二学期期末达标测试试题含解析_第3页
2024届淄博市重点中学数学高二第二学期期末达标测试试题含解析_第4页
2024届淄博市重点中学数学高二第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届淄博市重点中学数学高二第二学期期末达标测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有()A.5种 B.4种 C.9种 D.20种2.在复平面内,向量对应的复数是,向量对应的复数是,则向量对应的复数对应的复平面上的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.用秦九韶算法求次多项式,当时,求需要算乘方、乘法、加法的次数分别为()A. B. C. D.4.已知函数,若,则实数a的取值范围是()A. B. C. D.5.若双曲线的离心率大于2,则该双曲线的虚轴长的取值范围是()A. B. C. D.6.学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。现从该小组中选出3位同学分别到A,B,C三地进行社会调查,若选出的同学中男女均有,则不同安排方法有()A.70种 B.140种 C.420种 D.840种7.如图,线段AB=8,点C在线段AB上,且AC=2,P为线段CB上一动点,点A绕着C旋转后与点B绕点P旋转后重合于点D,设CP=x,△CPD的面积为f(x).求f(x)的最大值().A.B.2C.3 D.8.设是含数的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,的可能取值只能是()A. B. C. D.9.甲,乙,丙,丁四人参加完某项比赛,当问到四人谁得第一时,回答如下:甲:“我得第一名”;乙:“丁没得第一名”;丙:“乙没得第一名”;丁:“我得第一名”.已知他们四人中只有一个说真话,且只有一人得第一.根据以上信息可以判断得第一名的人是()A.甲B.乙C.丙D.丁10.已知函数在恰有两个零点,则实数的取值范围是()A. B.C. D.11.函数在定义域内可导,的图象如图所示,则导函数可能为()A. B.C. D.12.将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则()A.,的最小值为 B.,的最小值为C.,的最小值为 D.,的最小值为二、填空题:本题共4小题,每小题5分,共20分。13.若的展开式中,常数项为5670,则展开式中各项系数的和为____.14.设集合,选择的两个非空子集和,要使中最小的数大于中最大的数,则不同的选择方法共有________种.15.在平面直角坐标系xOy中,P是曲线y=x+4x(x>0)上的一个动点,则点P到直线x+y=016.已知向量与的夹角为60°,||=2,||=1,则|+2|=______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)若展开式中的常数项为60,求展开式中除常数项外其余各项系数之和;(2)已知二项式(是虚数单位,)的展开的展开式中有四项的系数为实数,求的值.18.(12分)已知函数f(x)=x3+ax2(1)求函数f(x)的解析式及单调区间;(2)求函数f(x)在区间-3,2的最大值与最小值.19.(12分)已知函数.(1)讨论的单调性;(2)当时,,记函数在上的最大值为,证明:.20.(12分)已知矩阵,.(1)求;(2)在平面直角坐标系中,求直线在对应的变换作用下所得直线的方程.21.(12分)某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.(1)求获得复赛资格应划定的最低分数线;(2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间与各抽取多少人?(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。22.(10分)选修4-4:坐标系与参数方程以直角坐标系的原点为极点,轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线的参数方程为(为参数),设点,直线与曲线相交于两点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

分成两类方法相加.【题目详解】会用第一种方法的有5个人,选1个人完成这项工作有5种选择;会用第二种方法的有4个人,选1个人完成这项工作有4种选择;两者相加一共有9种选择,故选C.【题目点拨】本题考查分类加法计数原理.2、C【解题分析】

先求,再确定对应点所在象限【题目详解】,对应点为,在第三象限,选C.【题目点拨】本题考查向量线性运算以及复数几何意义,考查基本分析求解能力,属基础题.3、D【解题分析】求多项式的值时,首先计算最内层括号内一次多项式的值,即然后由内向外逐层计算一次多项式的值,即..….这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.∴对于一个n次多项式,至多做n次乘法和n次加法故选D.4、D【解题分析】由函数,可得,所以函数为奇函数,又,因为,所以,所以函数为单调递增函数,因为,即,所以,解得,故选D.点睛:本题考查了函数的单调性、奇偶性和函数不等式的求解问题,其中解答中函数的奇偶性和函数的单调性,转化为不等式是解答的关键,着重考查了分析问题和解答问题的能力,对于解函数不等式:首先根据函数的单调性和奇偶性把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内是试题的易错点.5、C【解题分析】

根据离心率大于2得到不等式:计算得到虚轴长的范围.【题目详解】,,,故答案选C【题目点拨】本题考查了双曲线的离心率,虚轴长,意在考查学生的计算能力.6、C【解题分析】

将情况分为2男1女和2女1男两种情况,相加得到答案.【题目详解】2男1女时:C52女1男时:C共有420种不同的安排方法故答案选C【题目点拨】本题考查了排列组合的应用,将情况分为2男1女和2女1男两种情况是解题的关键.7、A【解题分析】试题分析:利用三角形的构成条件,建立不等式,可求x的取值范围;三角形的周长是一个定值8,故其面积可用海伦公式表示出来,再利用基本不等式,即可求f(x)的最大值.解:(1)由题意,DC=2,CP=x,DP=6-x,根据三角形的构成条件可得x+6-x>2,2+6-x>x,2+x>6-x,解得2<x<4;三角形的周长是一个定值8,故其面积可用海伦公式表示出来,即f(x)=当且仅当4-x=-2+x,即x=3时,f(x)的最大值为,故选A.考点:函数类型点评:本题考查根据实际问题选择函数类型,本题中求函数解析式用到了海伦公式,8、B【解题分析】

利用函数的定义即可得到结果.【题目详解】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,故选B.【题目点拨】本题考查函数的定义,即“对于集合A中的每一个值,在集合B中有唯一的元素与它对应”(不允许一对多).9、B【解题分析】分析:分别假设甲、乙、丙、丁得第一名,逐一分析判断即可.详解:若甲得第一名,则甲、乙、丙说了真话,丁说了假话,不符合题意;若乙得第一名,则乙说了真话,甲、丙、丁说了假话,符合题意;若丙得第一名,则乙、丙说了真话,甲、丁说了假话,不符合题意;若丁得第一名,则丙、丁说了真话,甲、乙说了假话,不符合题意点睛:本题考查推理论证,考查简单的合情推理等基础知识,考查逻辑推理能力,属于基础题.10、B【解题分析】

本题可转化为函数与的图象在上有两个交点,然后对求导并判断单调性,可确定的图象特征,即可求出实数的取值范围.【题目详解】由题意,可知在恰有两个解,即函数与的图象在上有两个交点,令,则,当可得,故时,;时,.即在上单调递减,在上单调递增,,,,因为,所以当时,函数与的图象在上有两个交点,即时,函数在恰有两个零点.故选B.【题目点拨】已知函数有零点(方程有根)求参数值常用的方法:(1)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(2)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解.11、D【解题分析】

根据函数的单调性判断出导函数函数值的符号,然后结合所给的四个选项进行分析、判断后可得正确的结论.【题目详解】由图象可知,函数在时是增函数,因此其导函数在时,有(即函数的图象在轴上方),因此排除A、C.从原函数图象上可以看出在区间上原函数是增函数,所以,在区间上原函数是减函数,所以;在区间上原函数是增函数,所以.所以可排除C.故选D.【题目点拨】解题时注意导函数的符号与函数单调性之间的关系,即函数递增(减)时导函数的符号大(小)于零,由此可判断出导函数图象与x轴的相对位置,从而得到导函数图象的大体形状.12、A【解题分析】由题意得由题意得所以,因此当时,的最小值为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.二、填空题:本题共4小题,每小题5分,共20分。13、256【解题分析】

根据二项式展开式的通项公式求得,再用赋值法求出各项系数的和.【题目详解】由二项式的展开式的通项公式得,则所以所以所以再令得展开式中各项系数的和故答案为【题目点拨】本题考查二项式展开式中的特定项和各项系数和,属于中档题.14、【解题分析】试题分析:若集合中分别有一个元素,则选法种数有种;若集合中有一个元素,集合中有两个元素,则选法种数有种;若集合中有一个元素,集合中有三个元素,则选法种数有种;若集合中有一个元素,集合中有四个元素,则选法种数有种;若集合中有两个元素,集合中有一个元素,则选法种数有种;若集合中有两个元素,集合中有两个元素,则选法种数有种;若集合中有两个元素,集合中有三个元素,则选法种数有种;若集合中有三个元素,集合中有一个元素,则选法种数有种;若集合中有三个元素,集合中有两个元素,则选法种数有种;若集合中有四个元素,集合中有一个元素,则选法种数有种;总计有种.故答案应填:.考点:组合及组合数公式.【方法点睛】解法二:集合中没有相同的元素,且都不是空集,从个元素中选出个元素,有种选法,小的给集合,大的给集合;从个元素中选出个元素,有种选法,再分成两组,较小元素的一组给集合,较大元素的一组给集合,共有种方法;从个元素中选出个元素,有种选法,再分成两组,较小元素的一组给集合,较大元素的一组给集合,共有种方法;从个元素中选出个元素,有种选法,再分成两组,较小元素的一组给集合,较大元素的一组给集合,共有种方法;总计为种方法.根据题意,中最小的数大于中最大的数,则集合中没有相同的元素,且都不是空集,按中元素数目这和的情况,分种情况讨论,分别计算其选法种数,进而相加可得答案.本题考查组合数公式的运用,注意组合与排列的不同,进而区别运用,考查分类讨论的数学思想,属于压轴题.15、4.【解题分析】

将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【题目详解】当直线x+y=0平移到与曲线y=x+4x相切位置时,切点Q即为点P到直线x+y=0由y'=1-4x2即切点Q(2则切点Q到直线x+y=0的距离为2+3故答案为:4.【题目点拨】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.16、【解题分析】

∵平面向量与的夹角为,∴.∴故答案为.点睛:(1)求向量的夹角主要是应用向量的数量积公式.(2)常用来求向量的模.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或1【解题分析】

(1)求展开式的通项,根据常数项为60解得a的值,然后在原解析式中代入x=1求得各项系数之和,进而求出结果.(2)求出展开式的通项,因为展开式中有四项的系数为实数,所以r的取值为0,2,4,6,则可得出n的所有的可能的取值.【题目详解】解:(1)展开式的通项为,常数项为,由,,得.令,得各项系数之和为.所以除常数项外其余各项系数之和为.(2)展开式的通项为,因为展开式中有四项的系数为实数,且,,所以或1.【题目点拨】本题考查二项式展开式的通项,考查求二项式特定项的系数,以及虚数单位的周期性,属于基础题.18、(1)f(x)=x3+94x2-3x;f(x)单调增区间是-∞,-2,【解题分析】

(1)由题得f'-2=0f'12=0即a=【题目详解】(1)因为f(x)=x3+a由f'-2∴fxf'x令f'x>0⇒x>12或所以单调增区间是-∞,-2,12(2)由(1)可知,x-3,-2-2-2,11f'+0-0+f递增极大递减极小递增极小值f12而f-3可得fx【题目点拨】(1)本题主要考查利用导数研究函数的极值和最值,利用导数研究函数的单调区间,意在考查学生对这些知识的掌握水平和分析推理能力.(2)求函数在闭区间上的最值,只要比较极值和端点函数值的大小.19、(1)单调递减区间为,单调递增区间为;(2)见解析.【解题分析】

(1)利用导数求函数的单调性即可;(2)对求导,得,因为,所以,令,求导得在上单调递增,,使得,进而得在上单调递增,在上单调递减;所以,令,求导得在上单调递增,进而求得m的范围.【题目详解】(1)因为,所以,当时,;当时,,故的单调递减区间为,单调递增区间为.(2)当时,,则,当时,,令,则,所以在上单调递增,因为,,所以存在,使得,即,即.故当时,,此时;当时,,此时.即在上单调递增,在上单调递减.则.令,,则.所以在上单调递增,所以,.故成立.【题目点拨】本题考查了利用导数求函数的单调性和取值范围,也考查了构造新函数,转化思想,属于中档题.20、(1);(2).【解题分析】

分析:(1)直接根据逆矩阵公式计算即可(2)由,即解得,即.详解:(1)由题知,所以,根据逆矩阵公式,得.(2)设由上的任意一点在作用下得到上对应点.由,即解得,因为,所以,即.即直线的方程为.点睛:(1)逆矩阵计算公式是解第一问关键,要会掌握其运算公式(2)一直线在对应的变换作用下所得直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论