江西省宜春市靖安中学2024届数学高二第二学期期末经典试题含解析_第1页
江西省宜春市靖安中学2024届数学高二第二学期期末经典试题含解析_第2页
江西省宜春市靖安中学2024届数学高二第二学期期末经典试题含解析_第3页
江西省宜春市靖安中学2024届数学高二第二学期期末经典试题含解析_第4页
江西省宜春市靖安中学2024届数学高二第二学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省宜春市靖安中学2024届数学高二第二学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在的二项展开式中,二项式系数的最大值为,含项的系数为,则()A. B. C. D.2.已知定义在上的偶函数在上单调递增,则函数的解析式不可能是()A. B. C. D.3.下列命题中正确的个数()①“∀x>0,2x>sinx”的否定是“∃x0≤0,2x0≤sinx0”;②用相关指数R2可以刻画回归的拟合效果,A.0 B.1 C.2 D.34.下列函数既是偶函数,又在上为减函数的是()A. B. C. D.5.若集合,,则()A. B.C. D.6.设实数,满足约束条件,则的取值范围是()A. B. C. D.7.已知双曲线,若其过一、三象限的渐近线的倾斜角,则双曲线的离心率的取值范围是()A. B. C. D.8.在用反证法证明“已知,且,则中至少有一个大于1”时,假设应为()A.中至多有一个大于1 B.全都小于1C.中至少有两个大于1 D.均不大于19.已知函数,则()A. B. C.1 D.710.已知复数,则复数的虚部为()A. B. C. D.11.己知复数z满足,则A. B. C.5 D.2512.已知直线y=x+1与曲线y=A.1B.2C.-1D.-2二、填空题:本题共4小题,每小题5分,共20分。13.某次测试共有100名考生参加,测试成绩的频率分布直方图如下图所示,则成绩在80分以上的人数为__________.14.杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律.现把杨辉三角中的数从上到下,从左到右依次排列,得数列:.记作数列,若数列的前项和为,则___.15.若变量、满足约束条件,则的最大值为__________.16.为强化安全意识,某校拟在周一至周五的五天中随机选择天进行紧急疏散演练,则选择的天恰好为连续天的概率是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,试用所学知识说明上述监控生产过程方法的合理性;附:若随机变量Z服从正态分布N(μ,),则P(μ-3σ<Z<μ+3σ)=0.9974,,.18.(12分)(1)设:实数x满足|x﹣m|<2,设:实数x满足>1;若¬p是¬q的必要不充分条件,求实数m的取值范围(2)已知p:函数f(x)=ln(x2﹣ax+3)的定义城为R,已知q:已知且,指数函数g(x)=(a﹣1)x在实数域内为减函数;若¬p∨q为假命题,求实数a的取值范围.19.(12分)某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法.20.(12分)已知函数.当时,求在上的值域;若方程有三个不同的解,求b的取值范围.21.(12分)已知函数在处取到极值.(1)求实数的值,并求出函数的单调区间;(2)求函数在上的最大值与最小值及相应的的值.22.(10分)如图所示,已知ABCD是直角梯形,,.(1)证明:;(2)若,求三棱锥的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

由题意,先写出二项展开式的通项,由此得出二项式系数的最大值,以及含项的系数,进而可求出结果.【题目详解】因为的二项展开式的通项为:,因此二项式系数的最大值为:,令得,所以,含项的系数为,因此.故选:B.【题目点拨】本题主要考查求二项式系数的最大值,以及求指定项的系数,熟记二项式定理即可,属于常考题型.2、D【解题分析】

根据奇偶函数定义域关于原点对称求得的值.在根据单调性判断出正确选项.【题目详解】由于函数为偶函数,故其定义域关于原点对称,即,故函数的定义域为,且函数在上递增,故在上递减.对于A选项,,符合题意.对于B选项,符合题意.对于C选项,符合题意.对于D选项,,在上递减,不符合题意,故本小题选D.【题目点拨】本小题主要考查函数的奇偶性,考查函数的单调性,考查含有绝对值函数的理解,属于基础题.3、C【解题分析】

根据含量词命题的否定可知①错误;根据相关指数的特点可知R2越接近0,模型拟合度越低,可知②错误;根据四种命题的关系首先得到逆命题,利用不等式性质可知③正确;分别在m=0和m≠0的情况下,根据解集为R确定不等关系,从而解得m【题目详解】①根据全称量词的否定可知“∀x>0,2x>sinx”的否定是“∃x②相关指数R2越接近1,模型拟合度越高,即拟合效果越好;R2越接近③若“a>b>0,则3a>3b>0④当m=0时,mx2-2当m≠0时,若mx2-2m+1解得:m≥1,则④正确.∴正确的命题为:③④本题正确选项:C【题目点拨】本题考查命题真假性的判断,涉及到含量词命题的否定、四种命题的关系及真假性的判断、相关指数的应用、根据一元二次不等式解集为R求解参数范围的知识.4、B【解题分析】

通过对每一个选项进行判断得出答案.【题目详解】对于选项:函数在既不是偶函数也不是减函数,故排除;对于选项:函数既是偶函数,又在是减函数;对于选项:函数在是奇函数且增函数,故排除;对于选项:函数在是偶函数且增函数,故排除;故选:B【题目点拨】本题考查了函数的增减性以及奇偶性的判断,属于较易题.5、A【解题分析】分析:求出及,即可得到.详解:则.故选C.点睛:本题考查集合的综合运算,属基础题.6、A【解题分析】分析:作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=|x|﹣y对应的直线进行平移,观察直线在y轴上的截距变化,即可得出z的取值范围.详解:作出实数x,y满足约束条件表示的平面区域,得到如图的△ABC及其内部,其中A(﹣1,﹣2),B(0,),O(0,0).设z=F(x,y)=|x|﹣y,将直线l:z=|x|﹣y进行平移,观察直线在y轴上的截距变化,当x≥0时,直线为图形中的红色线,可得当l经过B与O点时,取得最值z∈[0,],当x<0时,直线是图形中的蓝色直线,经过A或B时取得最值,z∈[﹣,3]综上所述,z∈[﹣,3].故答案为:A.点睛:(1)本题主要考查线性规划,意在考查学生对该知识的掌握水平和数形结合的思想方法,考查学生分类讨论思想方法.(2)解答本题的关键是对x分x≥0和x<0讨论,通过分类转化成常见的线性规划问题.7、B【解题分析】分析:利用过一、三象限的渐近线的倾斜角θ∈[,],可得1≤≤,即可求出双曲线的离心率e的取值范围.详解:双曲线=1(a>0,b>0)的一条渐近线方程为y=x,由过一、三象限的渐近线的倾斜角θ∈[,],∴tan≤≤tan,∴1≤≤,∴1≤≤3,∴2≤1+≤4,即2≤e2≤4,解得≤e≤2,故选:B.点睛:求离心率的常用方法有以下两种:(1)求得的值,直接代入公式求解;(2)列出关于的齐次方程(或不等式),然后根据,消去后转化成关于的方程(或不等式)求解.8、D【解题分析】

直接利用反证法的定义得到答案.【题目详解】中至少有一个大于1的反面为均不大于1,故假设应为:均不大于1.故选:.【题目点拨】本题考查了反证法,意在考查学生对于反证法的理解.9、C【解题分析】

根据题意,由函数的解析式可得,又由即得到答案。【题目详解】由函数的解析式可得,又由,则【题目点拨】本题考查了分段函数,解答的关键是运用函数的周期性把转化有具体解析式的范围内。10、C【解题分析】分析:由复数的乘除法法则计算出复数,再由定义可得.详解:,虚部为.故选C.点睛:本题考查的运算复数的概念,解题时根据复数运算法则化复数为简单形式,可得虚部与实部.11、B【解题分析】

先计算复数再计算.【题目详解】故答案选B【题目点拨】本题考查了复数的化简,复数的模,属于基础题型.12、B【解题分析】设切点P(x0,y∴x二、填空题:本题共4小题,每小题5分,共20分。13、25【解题分析】分析:先求成绩在80分以上的概率,再根据频数等于总数与对应概率乘积求结果.详解:因为成绩在80分以下的概率为,所以成绩在80分以上的概率为,因此成绩在80分以上的人数为点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1;频率分布直方图中组中值与对应区间概率乘积的和为平均数;频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.14、2059【解题分析】

将数列排列成杨辉三角数阵,使得每行的项数与行的相等,并计算出每行的各项之和,然后确定数列第所处的行数与项的序数,然后利用规律将这些项全部相加可得答案。【题目详解】将数列中的项从上到下,从左到右排成杨辉三角形数阵,如下所示:使得每行的序数与该行的项数相等,则第行最后项在数列中的项数为,设位于第,则,所以,,且第行最后一项在数列中的项数为,所以,位于杨辉三角数阵的第行第个,第一行各项和为,第二行各项和为,第三行各项的和为,依此类推,第行各项的和为,因此,,故答案为:。【题目点拨】本题考查合情推理,考查二项式系数与杨辉三角,解决这类问题关键在于确定所找的项所在杨辉三角所处的位置,并利用规律来解题,考查推理论证能力与计算能力,属于难题。15、8【解题分析】

首先画出可行域,然后确定目标函数的最大值即可.【题目详解】绘制不等式组表示的可行域如图所示,结合目标函数的几何意义可得目标函数在点处取得最大值,其最大值为:.【题目点拨】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.16、【解题分析】试题分析:考查古典概型的计算公式及分析问题解决问题的能力.从个元素中选个的所有可能有种,其中连续有共种,故由古典概型的计算公式可知恰好为连续天的概率是.考点:古典概型的计算公式及运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)P(X≥1)=0.0408,E(X)=0.0416(2)上述监控生产过程的方法是合理的,详见解析【解题分析】

(1)通过可求出,利用二项分布的期望公式计算可得结果.(2)由(1)知落在(μ-3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理.【题目详解】解:(1)由题可知尺寸落在(μ-3σ,μ+3σ)之内的概率为0.9974,则落在(μ-3σ,μ+3σ)之外的概率为1-0.9974=0.0026,因为,所以P(X≥1)=1-P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.【题目点拨】本题考查对正态分布的理解以及二项分布的期望公式,是一道一般难度的概率综合体.18、(1);(2)【解题分析】

(1)解绝对值不等式求得中的范围,解分式不等式求得中的取值范围.由是的必要不充分条件知是的充分不必要条件,由此列不等式组,解不等式组求得的取值范围.(2)根据的定义域为求得为真时,的取值范围.根据的单调性求得为假时的取值范围.为假命题可知真假,由此列不等式组,解不等式组求得的取值范围.【题目详解】(1)记,即由条件是的必要不充分条件知是的充分不必要条件,从而有是的真子集,则,可得,故(2)当为真命题时,函数的定义域为,则恒成立,即,从而;条件为假命题可知真假,当为假命题时有即从而当真假有即,故【题目点拨】本小题主要考查绝对值不等式、分式不等式的解法,考查对数函数的定义域,考查指数函数的单调性,考查含有简单逻辑联结词命题真假性有关知识,属于中档题.19、37【解题分析】试题分析:解:首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第二类:2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.考点:本题主要考查分类、分步计数原理的综合应用.点评:是一道综合性较强的题目,分类中有分步,要求有清晰的思路.首先将人员分属集合,按集合分类法处理,对不重不漏解题有帮助.20、12.【解题分析】

(1)求导得到函数的单调性,利用单调性确定最值取得的点,从而得到值域;(2)将问题转化成与有三个交点的问题,通过求导得到图象,通过图象可知只需位于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论