版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省武义第三中学2024届高二数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若角是第四象限角,满足,则()A. B. C. D.2.圆与的位置关系是()A.相交 B.外切 C.内切 D.相离.3.设是两个不重合的平面,是两条不重合的直线,则以下结论错误的是()A.若,,则B.若,则C.若,则D.若,则4.一个均匀的正方体,把其中相对的面分别涂上红色、黄色、蓝色,随机向上抛出,正方体落地时“向上面为红色”的概率是A. B. C. D.5.与终边相同的角可以表示为A. B.C. D.6.复数z满足z=2i1-iA.1-i B.1+2i C.1+i D.-1-i7.已知一段演绎推理:“因为指数函数是增函数,而是指数函数,所以是增函数”,则这段推理的()A.大前提错误 B.小前提错误 C.结论正确 D.推理形式错误8.定义在上的函数,当时,,则函数()的所有零点之和等于()A.2 B.4 C.6 D.89.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x-3A.-1 B.1 C.-2 D.210.已知样本数据点集合为,样本中心点为,且其回归直线方程为,则当时,的估计值为()A. B. C. D.11.某样本平均数为,总体平均数为,那么()A. B. C. D.是的估计值12.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球半径相等的圆柱,与半球(如图一)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥(如图二),用任何一个平行与底面的平面去截它们时,可证得所截得的两个截面面积相等,由此证明该几何体与半球体积相等.现将椭圆绕轴旋转一周后得一橄榄状的几何体(如图三),类比上述方法,运用祖暅原理可求得其体积等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将红、黑、蓝、黄个不同的小球放入个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法的种数为________.(用数字作答)14.已知点在直线(为参数)上,点为曲线(为参数)上的动点,则的最小值为________________.15.平面直角坐标系中,若点经过伸缩变换后的点Q,则极坐标系中,极坐标与Q的直角坐标相同的点到极轴所在直线的距离等于__.16.平面直角坐标系中点(1,2)到直线的距离为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图.(I)若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;(II)若从甲的6次模拟测试成绩中随机选择2个,记选出的成绩中超过87分的个数为随机变量ξ,求ξ的分布列和均值.18.(12分)若的展开式中,第二、三、四项的二项式系数成等差数列.(1)求的值;(2)此展开式中是否有常数项,为什么?19.(12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?20.(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表.表1,设备改造后样本的频数分布表:质量指标值频数2184814162(1)请估计该企业在设备改造前的产品质量指标的平均数;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元,质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X得分布列和数学期望.21.(12分)设为关于的方程的虚根,虚数单位.(1)当时,求、的值;(2)若,在复平面上,设复数所对应的点为,复数所对应的点为,试求的取值范围.22.(10分)已知函数.(1)当时,求函数在点处的切线方程;(2)若函数有两个不同极值点,求实数的取值范围;(3)当时,求证:对任意,恒成立.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由题意利用任意角同角三角函数的基本关系,求得的值.【题目详解】解:∴角满足,平方可得1+sin2,∴sin2,故选B.【题目点拨】本题主要考查同角三角函数的基本关系,属于基础题.2、A【解题分析】
试题分析:由题是给两圆标准方程为:,因为,所以两圆相离,故选D.考点:圆与圆的位置关系.3、C【解题分析】试题分析:选项A可由面面平行的性质可以得到;B选项,可由线面平行的性质定理和判定定理,通过论证即可得到;C选项,,缺少条件和相交,故不能证明面面平行,C错误;D选项,,过作平面,,由线面平行的性质可得,,,.D正确.考点:直线与直线,直线与平面,平面与平面的位置关系.4、B【解题分析】
∵随机抛正方体,有6种等可能的结果,其中正方体落地时“向上面为红色”有2种情况,
∴正方体落地时“向上面为红色”的概率是
.故选B.5、C【解题分析】
将变形为的形式即可选出答案.【题目详解】因为,所以与终边相同的角可以表示为,故选C.【题目点拨】本题考查了与一个角终边相同的角的表示方法,属于基础题.6、D【解题分析】
直接利用复数代数形式的乘除运算化简得答案.【题目详解】z=2i1-i=2i(1+i)【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.7、A【解题分析】
分析该演绎推理的大前提、小前提和结论,结合指数函数的图象和性质判断正误,可以得出正确的答案.【题目详解】该演绎推理的大前提是:指数函数是增函数,小前提是:是指数函数,结论是:是增函数.其中,大前提是错误的,因为时,函数是减函数,致使得出的结论错误.故选:A.【题目点拨】本题考查了演绎推理的应用问题,解题时应根据演绎推理的三段论是什么,进行逐一判定,得出正确的结论,是基础题.8、D【解题分析】分析:首先根据得到函数关于对称,再根据对称性画出函数在区间上的图像,再根据函数与函数图像的交点来求得函数的零点的和.详解:因为故函数关于对称,令,即,画出函数与函数图像如下图所示,由于可知,两个函数图像都关于对称,两个函数图像一共有个交点,对称的两个交点的横坐标的和为,故函数的个零点的和为.故选D.点睛:本小题主要考查函数的对称性,考查函数的零点的转化方法,考查数形结合的数学思想方法.解决函数的零点问题有两个方法,一个是利用零点的存在性定理,即二分法来解决,这种方法用在判断零点所在的区间很方便.二个是令函数等于零,变为两个函数,利用两个函数图像的交点来得到函数的零点.9、A【解题分析】
先求出f2,再利用奇函数的性质得f【题目详解】由题意可得,f2=22-3=1因此,f-2=-f【题目点拨】本题考查利用函数的奇偶性求值,解题时要注意结合自变量选择解析式求解,另外就是灵活利用奇偶性,考查计算能力,属于基础题。10、D【解题分析】
根据线性回归直线过样本中心点,可得,然后代值计算,可得结果.【题目详解】由题可知:所以回归直线方程为当当时,故选:D【题目点拨】本题考查线性回归方程,掌握回归系数的求法以及回归直线必过样本中心点,属基础题.11、D【解题分析】
统计学中利用样本数据估计总体数据,可知样本平均数是总体平均数的估计值.【题目详解】解:样本平均数为,总体平均数为,
统计学中,利用样本数据估计总体数据,
∴样本平均数是总体平均数的估计值.
故选:D.【题目点拨】本题考查了利用样本数据估计总体数据的应用问题,是基础题.12、C【解题分析】
根据椭圆方程,构造一个底面半径为2,高为3的圆柱,通过计算可知高相等时截面面积相等,因而由祖暅原理可得橄榄球几何体的体积的一半等于圆柱的体积减去圆锥的体积.【题目详解】由椭圆方程,构造一个底面半径为2,高为3的圆柱在圆柱中挖去一个以圆柱下底面圆心为顶点、上底面为底面的圆锥当截面与底面距离为时,截圆锥得到的截面小圆半径为则,即所以截面面积为把代入椭圆方程,可求得所以橄榄球形状几何体的截面面积为由祖暅原理可得橄榄球几何体的体积为故选:C【题目点拨】本题考查了类比推理的综合应用,空间几何体体积的求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、30【解题分析】
先计算小球放入3个不同的盒子的放法数目,再计算红球和蓝球放到同一个盒子的放法数目,两个相减得到结果.【题目详解】将4个小球放入3个不同的盒子,先在4个小球中任取2个作为1组,再将其与其它2个小球对应3个盒子,共C42A33=36种情况,若红球和蓝球放到同一个盒子,则黑、黄球放进其余的盒子里,有A33=6种情况,则红球和蓝球不放到同一个盒子的放法种数为36-6=30.故答案为:30【题目点拨】本题考查排列组合及简单的计数原理的应用,注意用间接法,属于基础题.14、【解题分析】
先求出直线的普通方程,再求出点到直线的距离,再利用三角函数的性质求出|MN|的最小值.【题目详解】由题得直线方程为,由题意,点到直线的距离,∴.故答案为:【题目点拨】本题主要考查参数方程与普通方程的互化,考查点到直线的距离的最值的求法和三角函数的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.15、3.【解题分析】
由点P的直角坐标求出伸缩变换后的点Q的坐标,将点Q的坐标看作极坐标,根据极坐标的性质距离为,将极坐标代入即可求出距离【题目详解】点P经伸缩变换后,点Q的坐标为,将点Q看作极坐标,则距离为.【题目点拨】本题考查点的伸缩变换以及极坐标的性质,注意题目中给出的点P的坐标为直角坐标,不要看错题目,并且注意距离为正数,要有绝对值.16、【解题分析】
根据点到直线的距离公式完成计算即可.【题目详解】因为点为,直线为,所以点到直线的距离为:.故答案为:.【题目点拨】本题考查点到直线距离公式的运用,难度较易.已知点,直线,则点到直线的距离为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)答案见解析;(Ⅱ)答案见解析.【解题分析】
(1)由题意考查两人的平均值均为82,方差甲乙分别为,结合方差可知乙的方差小,即乙发挥更稳定,故可选择学生乙参加知识竞赛.(2)由题意可知:ξ的所有可能取值为0,1,2,结合超几何分布概率公式求得概率值,得到分布列,然后计算可得均值为.【题目详解】(I)学生甲的平均成绩x甲==82,学生乙的平均成绩x乙==82,又s=×[(68-82)2+(76-82)2+(79-82)2+(86-82)2+(88-82)2+(95-82)2]=77,s=×[(71-82)2+(75-82)2+(82-82)2+(84-82)2+(86-82)2+(94-82)2]=,则x甲=x乙,s>s,说明甲、乙的平均水平一样,但乙的方差小,即乙发挥更稳定,故可选择学生乙参加知识竞赛.(II)随机变量ξ的所有可能取值为0,1,2,且P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,则ξ的分布列为ξ012P所以均值E(ξ)=0×+1×+2×=.18、【解题分析】试题分析:(1)根据二项式定理可知,展开式中的每一项系数即为二项式系数,所以第二项系数为,第三项系数为,第四项系数为,由第二、三、四项系数成等差数列可有:,即,整理得:,解得:,因此,;(2)的展开式中的通项公式为,展开式中的常数项即,所以,与不符,所以展开式中不存在常数项。本题主要考查二项式定理展开式及通项公式。属于基本公式的考查,要求学生准确掌握公式,并能熟练运用公式解题。试题解析:(1)由,得:;化简得:,解得:,因此,(2)由,当时,,所以此展开式中不存在常数项.考点:1.二项式定理;2.等差中项。19、(1)(2)方案二更为划算【解题分析】
(1)设事件为“顾客获得半价”,可以求出,然后求出两位顾客都没有获得半价优惠的概率,然后利用对立事件的概率公式,求出两位顾客至少一人获得半价的概率;(2)先计算出方案一,顾客付款金额,再求出方案二付款金额元的可能取值,求出,最后进行比较得出结论.【题目详解】(1)设事件为“顾客获得半价”,则,所以两位顾客至少一人获得半价的概率为:.(2)若选择方案一,则付款金额为.若选择方案二,记付款金额为元,则可取的值为.,,,,∴.所以方案二更为划算.【题目点拨】本题考查了对立事件的概率公式、离散型随机变量的分布列、期望.考查了应用数学知识解决现实生活中实际问题的能力.20、(1)30.2;(2)分布列见解析,400.【解题分析】
(1)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(2)的可能取值为:240,300,360,420,480,根据直方图求出样本中一、二、三等品的频率分别为,利用独立事件与互斥事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.【题目详解】(1)样本的质量指标平均值为.根据样本质量指标平均值估计总体质量指标平均值为30.2.(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为,故从所有产品中随机抽一件,是一、二、三等品的概率分别为,随机变量的取值为:240,300,360,420,480,;,,所以随机变量的分布列为:240300360420480.【题目点拨】本题主要考查直方图的应用,互斥事件的概率公式、独立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题.求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年制衣面料供应居间合同
- 2025版小企业合同管理规范与合同管理信息化解决方案3篇
- 2025年超额展览会保险条款
- 二零二五版新型环保建材采购合同样本2篇
- 2025版企事业单位食堂员工招聘与服务协议3篇
- 2024-2025年中国宽带行业市场评估分析及投资发展盈利预测报告
- 2025版小额贷款合同签订中的合同签订中的合同签订前的准备与协商3篇
- 二零二五年度门面房装修工程设计与施工质量监理合同
- 2025版建筑行业设备托管正规范本3篇
- 二零二五年度游艇俱乐部船舶租赁售后服务合同
- 2024年高考语文备考之常考作家作品(下):中国现当代、外国
- 《装配式蒸压加气混凝土外墙板保温系统构造》中
- T-CSTM 01124-2024 油气管道工程用工厂预制袖管三通
- 2019版新人教版高中英语必修+选择性必修共7册词汇表汇总(带音标)
- 新译林版高中英语必修二全册短语汇总
- 基于自适应神经网络模糊推理系统的游客规模预测研究
- 河道保洁服务投标方案(完整技术标)
- 品管圈(QCC)案例-缩短接台手术送手术时间
- 精神科病程记录
- 阅读理解特训卷-英语四年级上册译林版三起含答案
- 清华大学考博英语历年真题详解
评论
0/150
提交评论